Show simple item record

dc.contributor.author
Worswick, Steven G.
dc.contributor.author
Spencer, James
dc.contributor.author
Jeschke, Gunnar
dc.contributor.author
Kuprov, Ilya
dc.date.accessioned
2018-09-04T11:32:48Z
dc.date.available
2018-09-02T07:25:40Z
dc.date.available
2018-09-04T11:32:48Z
dc.date.issued
2018-08
dc.identifier.other
10.1126/sciadv.aat5218
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/286397
dc.identifier.doi
10.3929/ethz-b-000286397
dc.description.abstract
The established model-free methods for the processing of two-electron dipolar spectroscopy data [DEER (double electron-electron resonance), PELDOR (pulsed electron double resonance), DQ-EPR (double-quantum electron paramagnetic resonance), RIDME (relaxation-induced dipolar modulation enhancement), etc.] use regularized fitting. In this communication, we describe an attempt to process DEER data using artificial neural networks trained on large databases of simulated data. Accuracy and reliability of neural network outputs from real experimental data were found to be unexpectedly high. The networks are also able to reject exchange interactions and to return a measure of uncertainty in the resulting distance distributions. This paper describes the design of the training databases, discusses the training process, and rationalizes the observed performance. Neural networks produced in this work are incorporated as options into Spinach and DeerAnalysis packages.
en_US
dc.language.iso
en
en_US
dc.publisher
AAAS
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Deep neural network processing of DEER data
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2018-08-24
ethz.journal.title
Science Advances
ethz.journal.volume
4
en_US
ethz.journal.issue
8
en_US
ethz.pages.start
eaat5218
en_US
ethz.size
18 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington D.C.
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02515 - Laboratorium für Physikalische Chemie / Laboratory of Physical Chemistry::03810 - Jeschke, Gunnar / Jeschke, Gunnar
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02515 - Laboratorium für Physikalische Chemie / Laboratory of Physical Chemistry::03810 - Jeschke, Gunnar / Jeschke, Gunnar
ethz.date.deposited
2018-09-02T07:25:51Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-09-04T11:32:55Z
ethz.rosetta.lastUpdated
2019-02-03T05:22:48Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Deep%20neural%20network%20processing%20of%20DEER%20data&rft.jtitle=Science%20Advances&rft.date=2018-08&rft.volume=4&rft.issue=8&rft.spage=eaat5218&rft.au=Worswick,%20Steven%20G.&Spencer,%20James&Jeschke,%20Gunnar&Kuprov,%20Ilya&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record