Metadata only
Date
2010-10-04Type
- Working Paper
ETH Bibliography
yes
Altmetrics
Abstract
We study $\epsilon$-representations of discrete groups by unitary operators on a Hilbert space. We define the notion of Ulam stability of a group which loosely means that finite-dimensional $\epsilon$-represendations are uniformly close to unitary representations. One of our main results is that certain lattices in connected semi-simple Lie groups of higher rank are Ulam stable. For infinite-dimensional $\epsilon$-representations, the similarly defined notion of strong Ulam stability is defined and it is shown that groups with free subgroups are not strongly Ulam stable. We also study deformation rigidity of unitary representations and show that groups containing a free subgroup are not deformation rigid. Show more
Publication status
publishedExternal links
Journal / series
arXivPages / Article No.
Publisher
Cornell UniversityOrganisational unit
03491 - Burger, Marc / Burger, Marc
Related publications and datasets
Is previous version of: https://doi.org/10.3929/ethz-b-000065696
More
Show all metadata
ETH Bibliography
yes
Altmetrics