Show simple item record

dc.contributor.author
Foresti, Daniele
dc.contributor.author
Kroll, Katharina T.
dc.contributor.author
Amissah, Robert
dc.contributor.author
Sillani, Francesco
dc.contributor.author
Homan, Kimberly A.
dc.contributor.author
Poulikakos, Dimos
dc.contributor.author
Lewis, Jennifer A.
dc.date.accessioned
2018-09-14T13:01:10Z
dc.date.available
2018-09-14T05:02:47Z
dc.date.available
2018-09-14T10:17:37Z
dc.date.available
2018-09-14T10:18:51Z
dc.date.available
2018-09-14T13:01:10Z
dc.date.issued
2018-08-01
dc.identifier.issn
2375-2548
dc.identifier.other
10.1126/sciadv.aat1659
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/289614
dc.identifier.doi
10.3929/ethz-b-000289614
dc.description.abstract
Droplet-based printing methods are widely used in applications ranging from biological microarrays to additive manufacturing. However, common approaches, such as inkjet or electrohydrodynamic printing, are well suited only for materials with low viscosity or specific electromagnetic properties, respectively. While in-air acoustophoretic forces are material-independent, they are typically weak and have yet to be harnessed for printing materials. We introduce an acoustophoretic printing method that enables drop-on-demand patterning of a broad range of soft materials, including Newtonian fluids, whose viscosities span more than four orders of magnitude (0.5 to 25,000 mPa·s) and yield stress fluids (τ_0 > 50 Pa). By exploiting the acoustic properties of a subwavelength Fabry-Perot resonator, we have generated an accurate, highly localized acoustophoretic force that can exceed the gravitational force by two orders of magnitude to eject microliter-to-nanoliter volume droplets. The versatility of acoustophoretic printing is demonstrated by patterning food, optical resins, liquid metals, and cell-laden biological matrices in desired motifs.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
AAAS
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Acoustophoretic printing
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2018-08-31
ethz.journal.title
Science Advances
ethz.journal.volume
4
en_US
ethz.journal.issue
8
en_US
ethz.journal.abbreviated
Sci Adv
ethz.pages.start
eaat165
en_US
ethz.size
10 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03462 - Poulikakos, Dimos / Poulikakos, Dimos
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03462 - Poulikakos, Dimos / Poulikakos, Dimos
ethz.date.deposited
2018-09-14T05:03:06Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-09-14T13:01:15Z
ethz.rosetta.lastUpdated
2021-02-15T01:46:19Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Acoustophoretic%20printing&rft.jtitle=Science%20Advances&rft.date=2018-08-01&rft.volume=4&rft.issue=8&rft.spage=eaat165&rft.issn=2375-2548&rft.au=Foresti,%20Daniele&Kroll,%20Katharina%20T.&Amissah,%20Robert&Sillani,%20Francesco&Homan,%20Kimberly%20A.&rft.genre=article&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record