Lipschitz and path isometric embeddings of metric spaces
dc.contributor.author
Le Donne, Enrico
dc.date.accessioned
2020-09-28T08:43:15Z
dc.date.available
2017-06-09T09:08:26Z
dc.date.available
2020-09-28T08:43:15Z
dc.date.issued
2010-05-10
dc.identifier.uri
http://hdl.handle.net/20.500.11850/29465
dc.description.abstract
We prove that each sub-Riemannian manifold can be embedded in some Euclidean space preserving the length of all the curves in the manifold. The result is an extension of Nash C^1 Embedding Theorem. For more general metric spaces the same result is false, e.g., for Finsler non-Riemannian manifolds. However, we also show that any metric space of finite Hausdorff dimension can be embedded in some Euclidean space via a Lipschitz map.
en_US
dc.language.iso
en
en_US
dc.publisher
Cornell University
en_US
dc.subject
Path isometry
en_US
dc.subject
Embedding
en_US
dc.subject
Sub-Riemannian manifold
en_US
dc.subject
Nash Embedding Theorem
en_US
dc.subject
Lipschitz embedding
en_US
dc.title
Lipschitz and path isometric embeddings of metric spaces
en_US
dc.type
Working Paper
ethz.journal.title
arXiv
ethz.pages.start
1005.1623
en_US
ethz.size
19 p.
en_US
ethz.identifier.arxiv
1005.1623
ethz.publication.place
Ithaca, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03500 - Lang, Urs / Lang, Urs
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03500 - Lang, Urs / Lang, Urs
ethz.date.deposited
2017-06-09T09:08:44Z
ethz.source
ECIT
ethz.identifier.importid
imp59364d9a5c2eb14833
ethz.ecitpid
pub:48910
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2017-07-14T17:33:13Z
ethz.rosetta.lastUpdated
2021-02-15T17:36:43Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Lipschitz%20and%20path%20isometric%20embeddings%20of%20metric%20spaces&rft.jtitle=arXiv&rft.date=2010-05-10&rft.spage=1005.1623&rft.au=Le%20Donne,%20Enrico&rft.genre=preprint&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Working Paper [5287]