Show simple item record

dc.contributor.author
Sa, Inkyu
dc.contributor.author
Popović, Marija
dc.contributor.author
Khanna, Raghav
dc.contributor.author
Chen, Zetao
dc.contributor.author
Lottes, Philipp
dc.contributor.author
Liebisch, Frank
dc.contributor.author
Nieto, Juan
dc.contributor.author
Stachniss, Cyrill
dc.contributor.author
Walter, Achim
dc.contributor.author
Siegwart, Roland
dc.date.accessioned
2018-10-16T16:49:58Z
dc.date.available
2018-10-13T08:40:55Z
dc.date.available
2018-10-16T16:49:58Z
dc.date.issued
2018-09
dc.identifier.issn
2072-4292
dc.identifier.other
10.3390/rs10091423
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/295660
dc.identifier.doi
10.3929/ethz-b-000295660
dc.description.abstract
The ability to automatically monitor agricultural fields is an important capability in precision farming, enabling steps towards more sustainable agriculture. Precise, high-resolution monitoring is a key prerequisite for targeted intervention and the selective application of agro-chemicals. The main goal of this paper is developing a novel crop/weed segmentation and mapping framework that processes multispectral images obtained from an unmanned aerial vehicle (UAV) using a deep neural network (DNN). Most studies on crop/weed semantic segmentation only consider single images for processing and classification. Images taken by UAVs often cover only a few hundred square meters with either color only or color and near-infrared (NIR) channels. Although a map can be generated by processing single segmented images incrementally, this requires additional complex information fusion techniques which struggle to handle high fidelity maps due to their computational costs and problems in ensuring global consistency. Moreover, computing a single large and accurate vegetation map (e.g., crop/weed) using a DNN is non-trivial due to difficulties arising from: (1) limited ground sample distances (GSDs) in high-altitude datasets, (2) sacrificed resolution resulting from downsampling high-fidelity images, and (3) multispectral image alignment. To address these issues, we adopt a stand sliding window approach that operates on only small portions of multispectral orthomosaic maps (tiles), which are channel-wise aligned and calibrated radiometrically across the entire map. We define the tile size to be the same as that of the DNN input to avoid resolution loss. Compared to our baseline model (i.e., SegNet with 3 channel RGB (red, green, and blue) inputs) yielding an area under the curve (AUC) of [background=0.607, crop=0.681, weed=0.576], our proposed model with 9 input channels achieves [0.839, 0.863, 0.782]. Additionally, we provide an extensive analysis of 20 trained models, both qualitatively and quantitatively, in order to evaluate the effects of varying input channels and tunable network hyperparameters. Furthermore, we release a large sugar beet/weed aerial dataset with expertly guided annotations for further research in the fields of remote sensing, precision agriculture, and agricultural robotics.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
MDPI
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
precision farming
en_US
dc.subject
weed management
en_US
dc.subject
multispectral imaging
en_US
dc.subject
semantic segmentation
en_US
dc.subject
deep neural network
en_US
dc.subject
unmanned aerial vehicle
en_US
dc.subject
remote sensing
en_US
dc.title
WeedMap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2018-09-07
ethz.journal.title
Remote Sensing
ethz.journal.volume
10
en_US
ethz.journal.issue
9
en_US
ethz.journal.abbreviated
Remote Sens.
ethz.pages.start
1423
en_US
ethz.size
25 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Basel
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::03894 - Walter, Achim / Walter, Achim
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::03894 - Walter, Achim / Walter, Achim
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
ethz.date.deposited
2018-10-13T08:41:11Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-10-16T16:50:14Z
ethz.rosetta.lastUpdated
2022-03-28T21:28:38Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=WeedMap:%20A%20large-scale%20semantic%20weed%20mapping%20framework%20using%20aerial%20multispectral%20imaging%20and%20deep%20neural%20network%20for%20precision%20farming&rft.jtitle=Remote%20Sensing&rft.date=2018-09&rft.volume=10&rft.issue=9&rft.spage=1423&rft.issn=2072-4292&rft.au=Sa,%20Inkyu&Popovi%C4%87,%20Marija&Khanna,%20Raghav&Chen,%20Zetao&Lottes,%20Philipp&rft.genre=article&rft_id=info:doi/10.3390/rs10091423&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record