Show simple item record

dc.contributor.author
Grönquist, Philippe
dc.contributor.author
Wittel, Falk K.
dc.contributor.author
Rüggeberg, Markus
dc.date.accessioned
2018-11-27T09:52:51Z
dc.date.available
2018-11-09T04:57:01Z
dc.date.available
2018-11-27T09:52:51Z
dc.date.issued
2018
dc.identifier.other
10.1371/journal.pone.0205607
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/302193
dc.identifier.doi
10.3929/ethz-b-000302193
dc.description.abstract
In recent architectural research, thin wooden bilayer laminates capable of self-actuation in response to humidity changes have been proposed as sustainable, programmed, and fully autonomous elements for facades or roofs for shading and climate regulation. Switches, humidistats, or motor elements represent further promising applications. Proper wood-adapted prediction models for actuation, however, are still missing. Here, a simple model that can predict bending deformation as a function of moisture content change, wood material parameters, and geometry is presented. We consider material anisotropy and moisture-dependency of elastic mechanical parameters. The model is validated using experimental data collected on bilayers made out of European beech wood. Furthermore, we present essential design aspects in view of facilitated industrial applications. Layer thickness, thickness-ratio, and growth ring angle of the wood in single layers are assessed by their effect on curvature, stored elastic energy, and generated axial stress. A sensitivity analysis is conducted to identify primary curvature-impacting model input parameters.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Public Library of Science
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Modeling and design of thin bending wooden bilayers
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2018-10-16
ethz.journal.title
PLoS ONE
ethz.journal.volume
13
en_US
ethz.journal.issue
10
en_US
ethz.pages.start
e0205607
en_US
ethz.size
12 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
San Francisco, CA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02606 - Institut für Baustoffe (IfB) / Institute for Building Materials::03917 - Burgert, Ingo / Burgert, Ingo
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02606 - Institut für Baustoffe (IfB) / Institute for Building Materials::03917 - Burgert, Ingo / Burgert, Ingo
ethz.date.deposited
2018-11-09T04:57:04Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-11-27T09:52:57Z
ethz.rosetta.lastUpdated
2019-02-03T11:47:18Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Modeling%20and%20design%20of%20thin%20bending%20wooden%20bilayers&rft.jtitle=PLoS%20ONE&rft.date=2018&rft.volume=13&rft.issue=10&rft.spage=e0205607&rft.au=Gr%C3%B6nquist,%20Philippe&Wittel,%20Falk%20K.&R%C3%BCggeberg,%20Markus&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record