QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights
dc.contributor.author
Herrmann, Lukas
dc.contributor.author
Schwab, Christoph
dc.date.accessioned
2024-05-14T07:34:52Z
dc.date.available
2018-11-27T15:07:13Z
dc.date.available
2018-11-27T17:04:39Z
dc.date.available
2019-02-14T17:04:14Z
dc.date.available
2024-05-14T07:34:52Z
dc.date.issued
2019-01-10
dc.identifier.issn
0029-599X
dc.identifier.issn
0945-3245
dc.identifier.other
10.1007/s00211-018-0991-1
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/306557
dc.identifier.doi
10.3929/ethz-b-000306557
dc.description.abstract
We analyze convergence rates of quasi-Monte Carlo (QMC) quadratures for countably-parametric solutions of linear, elliptic partial differential equations (PDE) in divergence form with log-Gaussian diffusion coefficient, based on the error bounds in Nichols and Kuo (J Complex 30(4):444–468, 2014. https://doi.org/10.1016/j.jco.2014.02.004). We prove, for representations of the Gaussian random field PDE input with locally supported basis functions, and for continuous, piecewise polynomial finite element discretizations in the physical domain novel QMC error bounds in weighted spaces with product weights that exploit localization of supports of the basis elements representing the input Gaussian random field. In this case, the cost of the fast component-by-component algorithm for constructing the QMC points scales linearly in terms of the integration dimension. The QMC convergence rate O(N^-1+δ) (independent of the parameter space dimension s) is achieved under weak summability conditions on the expansion coefficients.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2018-08-11
ethz.journal.title
Numerische Mathematik
ethz.journal.volume
141
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Numer. Math.
ethz.pages.start
63
en_US
ethz.pages.end
102
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.notes
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
en_US
ethz.date.deposited
2018-11-27T15:07:19Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-02-14T17:04:22Z
ethz.rosetta.lastUpdated
2019-02-14T17:04:22Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=QMC%20integration%20for%20lognormal-parametric,%20elliptic%20PDEs:%20local%20supports%20and%20product%20weights&rft.jtitle=Numerische%20Mathematik&rft.date=2019-01-10&rft.volume=141&rft.issue=1&rft.spage=63&rft.epage=102&rft.issn=0029-599X&0945-3245&rft.au=Herrmann,%20Lukas&Schwab,%20Christoph&rft.genre=article&rft_id=info:doi/10.1007/s00211-018-0991-1&
Files in this item
Publication type
-
Journal Article [130410]