Show simple item record

dc.contributor.author
De Castro, Ana I.
dc.contributor.author
Six, Johan
dc.contributor.author
Plant, Richard E.
dc.contributor.author
Peña, José M.
dc.date.accessioned
2018-12-03T14:22:17Z
dc.date.available
2018-12-02T05:31:47Z
dc.date.available
2018-12-03T14:22:17Z
dc.date.issued
2018-11
dc.identifier.issn
2072-4292
dc.identifier.other
10.3390/rs10111745
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/307958
dc.identifier.doi
10.3929/ethz-b-000307958
dc.description.abstract
Remote sensing technology allows monitoring the progress of vegetation and crop phenology in large regions. Seasonal vegetation trends are commonly estimated from high temporal resolution but coarse spatial resolution satellite imagery, e.g., from MODIS-NDVI (Moderate Resolution Imaging Spectroradiometer—Normalized Difference Vegetation Index) time-series, which has usually limited their application to scenarios with few land uses or crops covering areas larger than actual parcel sizes. As an alternative, this paper proposes a general and robust procedure to map crop phenology at the level of individual crop parcels, and validates its feasibility in a complex and diverse cropland area located in central California. A first calibration phase consisted of evaluating the three curve-fitting models implemented in the TIMESAT software (i.e., asymmetric Gaussian (AG), double logistic (DL), and adaptive Savitzky–Golay (SG) filtering) and reporting the model and its settings that best adjusted to the MODIS-NDVI profile of each crop studied. Next, based on the selected crop-specific models and with a crop map previously obtained from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) multi-temporal images, the procedure mapped four crop calendar events (i.e., start, end, middle, and length of the season) and five phenology-related metrics (i.e., base, maximum, amplitude, derivatives, and integrals of the NDVI values) of the study region by object-based image analysis (OBIA) of the MODIS-NDVI time-series. To mitigate the impact of mixed pixels, the OBIA procedure was designed to automatically apply a restrictive criterion based on the coverage of MODIS-NDVI pixels in each crop parcel: (1) using only the MODIS-NDVI pixels that were placed 100% within each crop parcel (i.e., “pure” pixels); or (2) if no “pure” pixels exist in any crop parcel, using only pixels with coverage percentages greater than 50%, and in such cases, reporting the mixing percentage in the output file. The calibration phase showed that the performance of the SG filtering was superior in most crops, with the exception of rice, while the AG model was intermediate in all of the cases. Differences between the dates of the start and end of the season that were observed in 120 ground-truth fields and the ones estimated by the crop-specific models were in a range of 11 days (for the corn fields) and 22 days (for the vineyard fields) on average. The OBIA procedure was also validated in 240 independent parcels with “pure” MODIS-NDVI pixels, reporting 89% and 82% of accuracy when mapping the start and end of the season, respectively. Our results revealed different growth patterns of the studied crops, especially of the crop calendar events of herbaceous (i.e., corn, rice, sunflower, and tomato) and woody crops (i.e., almond, walnut, and vineyard), of the NDVI derivatives of rice and the other studied herbaceous crops, and of the NDVI integrals of vineyard and the other studied woody crops. The resulting maps and tables provide valuable geospatial information for every parcel over time with several applications in cropland management, irrigation scheduling, and ecosystem modeling.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
MDPI
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
crop phenology
en_US
dc.subject
cropland data layer
en_US
dc.subject
curve-fitting models
en_US
dc.subject
TIMESAT
en_US
dc.subject
seasonality imagery
en_US
dc.title
Mapping crop calendar events and phenology-related metrics at the parcel level by object-based image analysis (OBIA) of MODIS-NDVI time-series: A case study in central California
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2018-11-01
ethz.journal.title
Remote Sensing
ethz.journal.volume
10
en_US
ethz.journal.issue
11
en_US
ethz.journal.abbreviated
Remote sens.
ethz.pages.start
1745
en_US
ethz.size
21 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Basel
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::03982 - Six, Johan / Six, Johan
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::03982 - Six, Johan / Six, Johan
ethz.date.deposited
2018-12-02T05:31:49Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-12-03T14:22:33Z
ethz.rosetta.lastUpdated
2019-02-03T11:58:59Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Mapping%20crop%20calendar%20events%20and%20phenology-related%20metrics%20at%20the%20parcel%20level%20by%20object-based%20image%20analysis%20(OBIA)%20of%20MODIS-NDVI%20ti&rft.jtitle=Remote%20Sensing&rft.date=2018-11&rft.volume=10&rft.issue=11&rft.spage=1745&rft.issn=2072-4292&rft.au=De%20Castro,%20Ana%20I.&Six,%20Johan&Plant,%20Richard%20E.&Pe%C3%B1a,%20Jos%C3%A9%20M.&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record