Metadata only
Datum
2018Typ
- Conference Paper
ETH Bibliographie
yes
Altmetrics
Abstract
Modern stochastic optimization methods often rely on uniform sampling which is agnostic to the underlying characteristics of the data. This might degrade the convergence by yielding estimates that suffer from a high variance. A possible remedy is to employ non-uniform importance sampling techniques, which take the structure of the dataset into account. In this work, we investigate a recently proposed setting which poses variance reduction as an online optimization problem with bandit feedback. We devise a novel and efficient algorithm for this setting that finds a sequence of importance sampling distributions competitive with the best fixed distribution in hindsight, the first result of this kind. While we present our method for sampling data points, it naturally extends to selecting coordinates or even blocks of thereof. Empirical validations underline the benefits of our method in several settings. Mehr anzeigen
Publikationsstatus
publishedExterne Links
Buchtitel
Proceedings of the 31st Conference On Learning Theory (COLT 2018)Zeitschrift / Serie
Proceedings of Machine Learning ResearchBand
Seiten / Artikelnummer
Verlag
PMLRKonferenz
Thema
importance sampling; variance reduction; bandit feedback; empirical risk minimizationOrganisationseinheit
03908 - Krause, Andreas / Krause, Andreas
Förderung
167212 - Scaling Up by Scaling Down: Big ML via Small Coresets (SNF)
ETH Bibliographie
yes
Altmetrics