Zur Kurzanzeige

dc.contributor.author
Moncorgé, Arthur
dc.contributor.supervisor
Jenny, Patrick
dc.contributor.supervisor
Tchelepi, Hamdi A.
dc.contributor.supervisor
Helmig, Rainer
dc.date.accessioned
2019-01-09T14:13:14Z
dc.date.available
2019-01-09T10:46:32Z
dc.date.available
2019-01-09T14:11:03Z
dc.date.available
2019-01-09T14:13:14Z
dc.date.issued
2018
dc.identifier.uri
http://hdl.handle.net/20.500.11850/314439
dc.identifier.doi
10.3929/ethz-b-000314439
dc.description.abstract
The fully implicit (FI) method is widely used for numerical modeling of multiphase flow and transport in porous media. It entails iterative linearization and solution of fully-coupled linear systems with mixed elliptic/hyperbolic character. However, in methods that treat the near-elliptic (flow) and hyperbolic (transport) parts separately, such as multiscale formulations (Jenny et al., JCP 2003, Møyner and Lie, JCP 2016), sequential solution strategies are used to couple the flow (pressures and velocities) and the transport (saturations / compositions). SFI schemes solve the fully coupled system in two steps: (1) Construct and solve the pressure equation (flow problem). (2) Solve the coupled species transport equations for the phase saturations and phase compositions. In SFI, each outer iteration involves this two-step sequence. Here, we propose a new SFI variant based on a nonlinear overall-volume balance equation. The first step consists of forming and solving a nonlinear pressure equation, which is a weighted sum of all the component mass conservation equations. The resulting pressure field is used to compute the total-velocity. The second step of the new SFI scheme entails introducing the overall-mass density as a degree-of-freedom, and solving the full set of component conservation equations cast in the natural-variables form (i.e., saturations and phase compositions). During the second step, the pressure and the total-velocity fields are fixed. The SFI scheme with a nonlinear pressure extends the SFI approach of Jenny et al. (JCP 2006) to multi-component compositional processes with interphase mass transfer. We analyze the `splitting errors' associated with the compositional SFI scheme, and we show how to control these errors in order to converge to the same solution as the FI method. We also show that phase-potential upwinding is incompatible with the total-velocity formulation of the fluxes, which is common in SFI schemes. We observe that in cases with strong capillary pressure or gravity, it is possible to have flow reversals. These reversals can strongly affect the convergence rate of SFI methods. We employ phase upwinding (PU) as well as a new hybrid upwinding (HU) scheme. HU determines the upwinding direction differently for the viscous, capillary pressure and buoyancy terms in the phase velocity expression. The use of HU leads to a consistent SFI scheme in terms of both pressure and compositions, and it improves the SFI convergence significantly in settings with strong capillarity and/or buoyancy. Finally, we use the multiscale restriction-smoothed basis (MsRSB) method (Møyner and Lie, JCP 2016) for the parabolic pressure operator. This sequential scheme then allows the design of robust numerical methods that are optimized for the sub-problems of flow and transport. Thus, we strongly recommend using this SFI method for sequential formulations in general, and multiscale formulations in particular.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Operator splitting
en_US
dc.subject
Coupled flow and transport
en_US
dc.subject
Multiscale methods
en_US
dc.subject
Multiphase flow in porous media
en_US
dc.subject
Compositional formulation
en_US
dc.subject
Hybrid upwinding
en_US
dc.subject
Sequential methods
en_US
dc.subject
Sequential fully implicit
en_US
dc.title
Sequential Fully Implicit Methods for Multiscale Modeling of Compositional Flows
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2019-01-09
ethz.size
181 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::530 - Physics
ethz.identifier.diss
25609
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02628 - Institut für Fluiddynamik / Institute of Fluid Dynamics
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02628 - Institut für Fluiddynamik / Institute of Fluid Dynamics::03644 - Jenny, Patrick / Jenny, Patrick
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02628 - Institut für Fluiddynamik / Institute of Fluid Dynamics::03644 - Jenny, Patrick / Jenny, Patrick
en_US
ethz.date.deposited
2019-01-09T10:46:36Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-01-09T14:11:36Z
ethz.rosetta.lastUpdated
2020-02-15T16:33:28Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Sequential%20Fully%20Implicit%20Methods%20for%20Multiscale%20Modeling%20of%20Compositional%20Flows&rft.date=2018&rft.au=Moncorg%C3%A9,%20Arthur&rft.genre=unknown&rft.btitle=Sequential%20Fully%20Implicit%20Methods%20for%20Multiscale%20Modeling%20of%20Compositional%20Flows
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige