Show simple item record

dc.contributor.author
Buchheim, Jakob
dc.contributor.author
Schlichting, Karl-Philipp
dc.contributor.author
Wyss, Roman M.
dc.contributor.author
Park, Hyung Gyu
dc.date.accessioned
2020-04-20T08:19:40Z
dc.date.available
2019-01-11T11:17:48Z
dc.date.available
2019-01-11T11:51:59Z
dc.date.available
2020-04-20T08:19:40Z
dc.date.issued
2019-01-22
dc.identifier.issn
1936-0851
dc.identifier.issn
1936-086X
dc.identifier.other
10.1021/acsnano.8b04875
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/315123
dc.description.abstract
Driven by the need of maximizing performance, membrane nanofabrication strives for ever thinner materials aiming to increase permeation while evoking inherent challenges stemming from mechanical stability and defects. We investigate this thickness rationale by studying viscous transport mechanisms across nanopores when transitioning the membrane thickness from infinitely thin to finite values. We synthesize double-layer graphene membranes containing pores with diameters from ∼6 to 1000 nm to investigate liquid permeation over a wide range of viscosities and pressures. Nanoporous membranes with thicknesses up to 90 nm realized by atomic layer deposition demonstrate dominance of the entrance resistance for aspect ratios up to one. Liquid permeation across these atomically thin pores is limited by viscous dissipation at the pore entrance. Independent of thickness and universal for porous materials, this entrance resistance sets an upper bound to the viscous transport. Our results imply that membranes with near-ultimate permeation should feature rationally selected thicknesses based on the target solute size for applications ranging from osmosis to microfiltration and introduce a proper perspective to the pursuit of ever thinner membranes.
en_US
dc.language.iso
en
en_US
dc.publisher
American Chemical Society
en_US
dc.subject
nanopore
en_US
dc.subject
graphene membrane
en_US
dc.subject
atomic layer deposition
en_US
dc.subject
nanofluidics
en_US
dc.subject
pressurized flow
en_US
dc.title
Assessing the Thickness–Permeation Paradigm in Nanoporous Membranes
en_US
dc.type
Journal Article
dc.date.published
2018-12-19
ethz.journal.title
ACS Nano
ethz.journal.volume
13
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
ACS Nano
ethz.pages.start
134
en_US
ethz.pages.end
142
en_US
ethz.size
9 p.
en_US
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::02646 - Institut für Polymere / Institute of Polymers::09482 - Vermant, Jan / Vermant, Jan
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::02646 - Institut für Polymere / Institute of Polymers::09482 - Vermant, Jan / Vermant, Jan
en_US
ethz.date.deposited
2019-01-11T11:18:00Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2019-01-11T11:52:21Z
ethz.rosetta.lastUpdated
2022-03-29T01:51:25Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Assessing%20the%20Thickness%E2%80%93Permeation%20Paradigm%20in%20Nanoporous%20Membranes&rft.jtitle=ACS%20Nano&rft.date=2019-01-22&rft.volume=13&rft.issue=1&rft.spage=134&rft.epage=142&rft.issn=1936-0851&1936-086X&rft.au=Buchheim,%20Jakob&Schlichting,%20Karl-Philipp&Wyss,%20Roman%20M.&Park,%20Hyung%20Gyu&rft.genre=article&rft_id=info:doi/10.1021/acsnano.8b04875&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record