Show simple item record

dc.contributor.author
Basso, Giuliano
dc.date.accessioned
2019-01-23T17:40:23Z
dc.date.available
2019-01-15T13:30:11Z
dc.date.available
2019-01-23T17:40:23Z
dc.date.issued
2018-02
dc.identifier.issn
2299-3274
dc.identifier.other
10.1515/agms-2018-0010
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/315938
dc.identifier.doi
10.3929/ethz-b-000315938
dc.description.abstract
We consider Lipschitz maps with values in quasi-metric spaces and extend such maps to finitely many points. We prove that in this context every 1-Lipschitz map admits an extension such that its Lipschitz constant is bounded from above by the number of added points plus one. Moreover, we prove that if the source space is a Hilbert space and the target space is a Banach space, then there exists an extension such that its Lipschitz constant is bounded from above by the square root of the total of added points plus one. We discuss applications to metric transforms.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
De Gruyter
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
M-matrix
en_US
dc.subject
Metric transforms
en_US
dc.subject
Lipschitz extension
en_US
dc.title
Lipschitz Extensions to Finitely Many Points
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2018-12-21
ethz.journal.title
Analysis and Geometry in Metric Spaces
ethz.journal.volume
6
en_US
ethz.journal.issue
1
en_US
ethz.pages.start
174
en_US
ethz.pages.end
191
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03500 - Lang, Urs / Lang, Urs
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03500 - Lang, Urs / Lang, Urs
en_US
ethz.date.deposited
2019-01-15T13:30:13Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-01-23T17:41:02Z
ethz.rosetta.lastUpdated
2019-01-23T17:41:02Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Lipschitz%20Extensions%20to%20Finitely%20Many%20Points&rft.jtitle=Analysis%20and%20Geometry%20in%20Metric%20Spaces&rft.date=2018-02&rft.volume=6&rft.issue=1&rft.spage=174&rft.epage=191&rft.issn=2299-3274&rft.au=Basso,%20Giuliano&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record