Show simple item record

dc.contributor.author
Saeedmanesh, Mohammadreza
dc.contributor.author
Kouvelas, Anastasios
dc.contributor.author
Geroliminis, Nikolas
dc.date.accessioned
2019-03-29T09:48:00Z
dc.date.available
2019-02-07T16:06:48Z
dc.date.available
2019-02-08T08:39:41Z
dc.date.available
2019-03-29T09:48:00Z
dc.date.issued
2019
dc.identifier.uri
http://hdl.handle.net/20.500.11850/323682
dc.identifier.doi
10.3929/ethz-b-000323682
dc.description.abstract
The problem of traffic state estimation for large-scale urban networks is studied. Given a network that is partitioned in a number of regions, the aggregated traffic dynamics describe the vehicle accumulation in each region as well as the transfer flows among neighbouring regions. Considering the fact that many such models have been extensively used for control in the literature recently, this work tackles the real-time estimation problem when limited data is available. An estimation engine is developed according to the Extended Kalman Filter (EKF) theory, that tries to estimate the real state of the multi-region dynamic system based on traffic sensors measurements. First, a stochastic model is presented for the dynamics of the process (plant). Then, the EKF estimation scheme is described that is based on a simpler aggregated model of the dynamics and some real-time measurements. The accuracy of the estimations is investigated through simulation by studying a realistic configuration of real-time availability of measurements; however the developed methodology is generic and the vector state we seek to estimate, as well as the available measurements can be altered according to the application. The proposed methodology is tested in microsimulation for the CBD of a large city and the resulting estimated traffic states (i.e., regional accumulations, demands, and distribution of outflows) are compared to the real ones that are obtained from the stochastic microsimulation environment (plant).
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Transportation Research Board
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
State estimation
en_US
dc.subject
Macroscopic Fundamental Diagram (MFD)
en_US
dc.subject
Extended Kalman filter (EKF)
en_US
dc.subject
Multi-region urban networks
en_US
dc.title
A real-time state estimation approach for multi-region MFD traffic systems based on extended Kalman filter
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.book.title
2019 TRB Annual Meeting Online
en_US
ethz.pages.start
19-02756
en_US
ethz.size
20 p.
en_US
ethz.version.deposit
updatedVersion
en_US
ethz.event
98th Annual Meeting of the Transportation Research Board (TRB 2019)
en_US
ethz.event.location
Washington, DC, USA
en_US
ethz.event.date
January 13-17, 2019
en_US
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::08686 - Gruppe Strassenverkehrstechnik
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt u. Landschaft ARCH u BAUG / Network City and Landscape ARCH and BAUG
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::08686 - Gruppe Strassenverkehrstechnik
en_US
ethz.date.deposited
2019-02-07T16:07:21Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-02-08T08:40:07Z
ethz.rosetta.lastUpdated
2020-02-15T18:09:43Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20real-time%20state%20estimation%20approach%20for%20multi-region%20MFD%20traffic%20systems%20based%20on%20extended%20Kalman%20filter&rft.date=2019&rft.spage=19-02756&rft.au=Saeedmanesh,%20Mohammadreza&Kouvelas,%20Anastasios&Geroliminis,%20Nikolas&rft.genre=proceeding&rft.btitle=2019%20TRB%20Annual%20Meeting%20Online
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record