A spatio temporal spectral framework for plant stress phenotyping
dc.contributor.author
Khanna, Raghav
dc.contributor.author
Schmid, Lukas
dc.contributor.author
Walter, Achim
dc.contributor.author
Nieto, Juan
dc.contributor.author
Siegwart, Roland
dc.contributor.author
Liebisch, Frank
dc.date.accessioned
2019-02-22T15:56:38Z
dc.date.available
2019-02-14T03:47:50Z
dc.date.available
2019-02-22T15:56:38Z
dc.date.issued
2019-02-06
dc.identifier.issn
1746-4811
dc.identifier.other
10.1186/s13007-019-0398-8
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/325081
dc.identifier.doi
10.3929/ethz-b-000325081
dc.description.abstract
Background
Recent advances in high throughput phenotyping have made it possible to collect large datasets following plant growth and development over time, and those in machine learning have made inferring phenotypic plant traits from such datasets possible. However, there remains a dirth of datasets following plant growth under stress conditions along with methods for inferring them using only remotely sensed data, especially under a combination of multiple stress factors such as drought, weeds and nutrient deficiency. Such stress factors and their combinations are commonly encountered during crop production and being able to accurately detect and treat such stress conditions in an automated and timely manner can provide a major boost to farm yields with minimal resource input.
Results
We present a generic framework for remote plant stress phenotyping that consists of a dataset with spatio-temporal-spectral data following sugarbeet crop growth under optimal, drought, low and surplus nitrogen fertilization, and weed stress conditions, along with a machine learning based methodology for systematically inferring these stress conditions from the remotely measured data. The dataset contains biweekly color images, infra-red stereo image pairs and hyperspectral camera images along with applied treatment parameters and environmental factors like temperature and humidity, collected over two months. We present a plant agnostic methodology for deriving plant trait indicators such as canopy cover, height, hyperspectral reflectance and vegetation indices along with a spectral 3D reconstruction of the plants from the raw data to serve as a benchmark. Additionally, we provide fresh and dry weight measurements for both the above (canopy) and below (beet) ground biomass at the end of the growing period to serve as indicators of expected yield. We further describe a data driven, machine learning based method to infer water, Nitrogen and weed stress using the derived plant trait indicators. We use the plant trait indicators to evaluate 8 different classification approaches from which the best classifier achieved a mean cross validation accuracy of ≈
93, 76 and 83% for drought, nitrogen and weed stress severity classification respectively. We also show that our multi-modal approach significantly improves classifier performance over using any single modality.
Conclusion
The presented framework and dataset can serve as a valuable reference for creating and comparing processing pipelines which extract plant trait indicators and infer prevalent stress factors from remote sensing data under a variety of environments and cropping conditions. These techniques can then be deployed on farm machinery or robots enabling automated, precise and timely corrective interventions for maximising yield.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
BioMed Central
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Phenotyping
en_US
dc.subject
Plant-stress
en_US
dc.subject
Nitrogen
en_US
dc.subject
Weed
en_US
dc.subject
Water
en_US
dc.subject
Dataset
en_US
dc.subject
Multispectral
en_US
dc.subject
3D
en_US
dc.title
A spatio temporal spectral framework for plant stress phenotyping
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Plant Methods
ethz.journal.volume
15
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Plant methods
ethz.pages.start
13
en_US
ethz.size
18 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Aerial Data Collection and Analysis, and Automated Ground Intervention for Precision Farming
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::03894 - Walter, Achim / Walter, Achim
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::03894 - Walter, Achim / Walter, Achim
ethz.grant.agreementno
644227
ethz.grant.agreementno
644227
ethz.grant.fundername
SBFI
ethz.grant.fundername
SBFI
ethz.grant.funderDoi
10.13039/501100007352
ethz.grant.funderDoi
10.13039/501100007352
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.date.deposited
2019-02-14T03:47:52Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-02-22T15:56:51Z
ethz.rosetta.lastUpdated
2024-02-02T07:13:12Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20spatio%20temporal%20spectral%20framework%20for%20plant%20stress%20phenotyping&rft.jtitle=Plant%20Methods&rft.date=2019-02-06&rft.volume=15&rft.issue=1&rft.spage=13&rft.issn=1746-4811&rft.au=Khanna,%20Raghav&Schmid,%20Lukas&Walter,%20Achim&Nieto,%20Juan&Siegwart,%20Roland&rft.genre=article&rft_id=info:doi/10.1186/s13007-019-0398-8&
Files in this item
Publication type
-
Journal Article [132176]