Cell-Membrane-Inspired Silicone Interfaces that Mitigate Proinflammatory Macrophage Activation and Bacterial Adhesion
dc.contributor.author
Qin, Xiao-Hua
dc.contributor.author
Şentürk, Berna
dc.contributor.author
Valentin, Jules
dc.contributor.author
Malheiro, Vera
dc.contributor.author
Fortunato, Giuseppino
dc.contributor.author
Ren, Qun
dc.contributor.author
Rottmar, Markus
dc.contributor.author
Maniura-Weber, Katharina
dc.date.accessioned
2022-08-02T11:55:39Z
dc.date.available
2019-02-14T03:47:51Z
dc.date.available
2019-02-18T17:40:59Z
dc.date.available
2022-08-02T11:55:39Z
dc.date.issued
2019-02-05
dc.identifier.issn
0743-7463
dc.identifier.issn
1520-5827
dc.identifier.other
10.1021/acs.langmuir.8b02292
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/325085
dc.identifier.doi
10.3929/ethz-b-000325085
dc.description.abstract
Biofouling on silicone implants causes serious complications such as fibrotic encapsulation, bacterial infection, and implant failure. Here we report the development of antifouling, antibacterial silicones through covalent grafting with a cell-membrane-inspired zwitterionic gel layer composed of 2-methacryolyl phosphorylcholine (MPC). To investigate how substrate properties influence cell adhesion, we cultured human-blood-derived macrophages and Escherichia coli on poly(dimethylsiloxane) (PDMS) and MPC gel surfaces with a range of 0.5–50 kPa in stiffness. Cells attach to glass, tissue culture polystyrene, and PDMS surfaces, but they fail to form stable adhesions on MPC gel surfaces due to their superhydrophilicity and resistance to biofouling. Cytokine secretion assays confirm that MPC gels have a much lower potential to trigger proinflammatory macrophage activation than PDMS. Finally, modification of the PDMS surface with a long-term stable hydrogel layer was achieved by the surface-initiated atom-transfer radical polymerization (SI-ATRP) of MPC and confirmed by the decrease in contact angle from 110 to 20° and the >70% decrease in the attachment of macrophages and bacteria. This study provides new insights into the design of antifouling and antibacterial interfaces to improve the long-term biocompatibility of medical implants.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Chemical Society
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Cell-Membrane-Inspired Silicone Interfaces that Mitigate Proinflammatory Macrophage Activation and Bacterial Adhesion
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2018-08-29
ethz.journal.title
Langmuir
ethz.journal.volume
35
en_US
ethz.journal.issue
5
en_US
ethz.journal.abbreviated
Langmuir
ethz.pages.start
1882
en_US
ethz.pages.end
1894
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2019-02-14T03:47:52Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-02-18T17:41:25Z
ethz.rosetta.lastUpdated
2023-02-07T04:58:45Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Cell-Membrane-Inspired%20Silicone%20Interfaces%20that%20Mitigate%20Proinflammatory%20Macrophage%20Activation%20and%20Bacterial%20Adhesion&rft.jtitle=Langmuir&rft.date=2019-02-05&rft.volume=35&rft.issue=5&rft.spage=1882&rft.epage=1894&rft.issn=0743-7463&1520-5827&rft.au=Qin,%20Xiao-Hua&%C5%9Eent%C3%BCrk,%20Berna&Valentin,%20Jules&Malheiro,%20Vera&Fortunato,%20Giuseppino&rft.genre=article&rft_id=info:doi/10.1021/acs.langmuir.8b02292&
Files in this item
Publication type
-
Journal Article [132360]