Neural Persistence: A Complexity Measure for Deep Neural Networks Using Algebraic Topology
dc.contributor.author
Rieck, Bastian Alexander
dc.contributor.author
Togninalli, Matteo
dc.contributor.author
Bock, Christian
dc.contributor.author
Moor, Michael
dc.contributor.author
Horn, Max
dc.contributor.author
Gumbsch, Thomas
dc.contributor.author
Borgwardt, Karsten
dc.date.accessioned
2019-02-26T08:20:34Z
dc.date.available
2019-02-22T16:19:50Z
dc.date.available
2019-02-22T16:22:27Z
dc.date.available
2019-02-25T07:54:53Z
dc.date.available
2019-02-25T13:13:45Z
dc.date.available
2019-02-26T08:20:34Z
dc.date.issued
2019-02-22
dc.identifier.uri
http://hdl.handle.net/20.500.11850/327207
dc.identifier.doi
10.3929/ethz-b-000327207
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
OpenReview
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Algebraic topology
en_US
dc.subject
Persistent homology
en_US
dc.subject
Network complexity
en_US
dc.subject
Neural network
en_US
dc.title
Neural Persistence: A Complexity Measure for Deep Neural Networks Using Algebraic Topology
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2019-02-02
ethz.book.title
International Conference on Learning Representations (ICLR 2019)
en_US
ethz.size
25 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
7th International Conference on Learning Representations (ICLR 2019)
en_US
ethz.event.location
New Orleans, LA, USA
en_US
ethz.event.date
May 6-9, 2019
en_US
ethz.publication.place
s.l.
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::09486 - Borgwardt, Karsten M. / Borgwardt, Karsten M.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::09486 - Borgwardt, Karsten M. / Borgwardt, Karsten M.
ethz.identifier.url
https://openreview.net/forum?id=ByxkijC5FQ
ethz.relation.isPartOf
https://openreview.net/group?id=ICLR.cc/2019/Conference#accepted-poster-papers
ethz.date.deposited
2019-02-22T16:19:58Z
ethz.source
BATCH
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-02-25T07:55:06Z
ethz.rosetta.lastUpdated
2021-02-15T03:44:20Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Neural%20Persistence:%20A%20Complexity%20Measure%20for%20Deep%20Neural%20Networks%20Using%20Algebraic%20Topology&rft.date=2019-02-22&rft.au=Rieck,%20Bastian%20Alexander&Togninalli,%20Matteo&Bock,%20Christian&Moor,%20Michael&Horn,%20Max&rft.genre=proceeding&rft.btitle=International%20Conference%20on%20Learning%20Representations%20(ICLR%202019)
Files in this item
Publication type
-
Conference Paper [33000]