Show simple item record

dc.contributor.author
Blair, Victoria E.
dc.contributor.author
Celebi, Kemal
dc.contributor.author
Müllen, Klaus
dc.contributor.author
Vermant, Jan
dc.date.accessioned
2019-03-01T17:09:29Z
dc.date.available
2019-03-01T05:16:34Z
dc.date.available
2019-03-01T17:09:29Z
dc.date.issued
2019-02-22
dc.identifier.issn
2196-7350
dc.identifier.other
10.1002/admi.201801570
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/328388
dc.identifier.doi
10.3929/ethz-b-000328388
dc.description.abstract
Confinement of particles to fluid–fluid interfaces provides a unique interaction environment, allowing the directed assembly of particles using lateral capillary forces. The particle laden interfacial layers can be deposited onto a variety of substrates for the fabrication of thin film coatings, designed to have structural or functional properties resulting from the interface‐specific structures. For the fabrication of electrically conducting films and specifically graphene‐based coatings, interfacial deposition techniques could offer a low cost and environmentally favorable alternative to conventional gas phase production methods, with possibly a broader choice of substrates. In this work liquid‐phase electrochemical exfoliation is used to produce platelets of few‐layer graphene from bulk graphite which are directly introduced to the water–air interface. These interfaces are characterized through compression experiments and interfacial shear rheology to probe the mechanical properties of the resulting monolayer films and identify mechanical percolation. Further, in situ measurements of electrical conductivity are integrated as a direct indication of electrical percolation. This directly verifies sufficient film quality as an important characteristic of the deposition process. Once deposited on a solid substrate, these films retain their electrical conductivity. But the mechanical properties of the films allow for facile production of freestanding microporous graphene membranes.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
deposition
en_US
dc.subject
graphene
en_US
dc.subject
Langmuir–Blodgett
en_US
dc.subject
liquid interfaces
en_US
dc.subject
Transparent conducting films
en_US
dc.title
Electrically Conductive Thin Films Derived from Bulk Graphite and Liquid–Liquid Interface Assembly
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2018-12-27
ethz.journal.title
Advanced Materials Interfaces
ethz.journal.volume
6
en_US
ethz.journal.issue
4
en_US
ethz.pages.start
1801570
en_US
ethz.size
9 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Weinheim
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2019-03-01T05:16:37Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-03-01T17:09:53Z
ethz.rosetta.lastUpdated
2019-03-01T17:09:53Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Electrically%20Conductive%20Thin%20Films%20Derived%20from%20Bulk%20Graphite%20and%20Liquid%E2%80%93Liquid%20Interface%20Assembly&rft.jtitle=Advanced%20Materials%20Interfaces&rft.date=2019-02-22&rft.volume=6&rft.issue=4&rft.spage=1801570&rft.issn=2196-7350&rft.au=Blair,%20Victoria%20E.&Celebi,%20Kemal&M%C3%BCllen,%20Klaus&Vermant,%20Jan&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record