Show simple item record

dc.contributor.author
Pröllochs, Nicolas
dc.contributor.author
Feuerriegel, Stefan
dc.contributor.author
Neumann, Dirk
dc.contributor.editor
Burstein, Jill
dc.contributor.editor
Doran, Christy
dc.contributor.editor
Solorio, Thamar
dc.date.accessioned
2020-03-31T11:11:38Z
dc.date.available
2019-03-07T14:46:56Z
dc.date.available
2019-03-08T11:37:09Z
dc.date.available
2019-09-23T12:38:13Z
dc.date.available
2020-03-31T11:11:38Z
dc.date.issued
2019-06
dc.identifier.isbn
978-1-950737-13-0
en_US
dc.identifier.other
10.18653/v1/N19-1038
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/329832
dc.identifier.doi
10.3929/ethz-b-000329832
dc.description.abstract
Negation scope detection is widely performed as a supervised learning task which relies upon negation labels at word level. This suffers from two key drawbacks: (1) such granular annotations are costly and (2) highly subjective, since, due to the absence of explicit linguistic resolution rules, human annotators often disagree in the perceived negation scopes. To the best of our knowledge, our work presents the first approach that eliminates the need for world-level negation labels, replacing it instead with document-level sentiment annotations. For this, we present a novel strategy for learning fully interpretable negation rules via weak supervision: we apply reinforcement learning to find a policy that reconstructs negation rules from sentiment predictions at document level. Our experiments demonstrate that our approach for weak supervision can effectively learn negation rules. Furthermore, an out-of-sample evaluation via sentiment analysis reveals consistent improvements (of up to 4.66%) over both a sentiment analysis with (i) no negation handling and (ii) the use of word-level annotations from humans. Moreover, the inferred negation rules are fully interpretable.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Association for Computational Linguistics
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Learning interpretable negation rules via weak supervision at document level: A reinforcement learning approach
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.book.title
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
en_US
ethz.journal.volume
1
en_US
ethz.pages.start
407
en_US
ethz.pages.end
413
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2019)
en_US
ethz.event.location
Minneapolis, MN, USA
en_US
ethz.event.date
June 2-7, 2019
en_US
ethz.publication.place
Stroudsburg, PA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::09623 - Feuerriegel, Stefan (ehemalig) / Feuerriegel, Stefan (former)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::09623 - Feuerriegel, Stefan (ehemalig) / Feuerriegel, Stefan (former)
en_US
ethz.date.deposited
2019-03-07T14:46:57Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-09-23T12:38:25Z
ethz.rosetta.lastUpdated
2022-03-29T01:41:51Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Learning%20interpretable%20negation%20rules%20via%20weak%20supervision%20at%20document%20level:%20A%20reinforcement%20learning%20approach&rft.date=2019-06&rft.volume=1&rft.spage=407&rft.epage=413&rft.au=Pr%C3%B6llochs,%20Nicolas&Feuerriegel,%20Stefan&Neumann,%20Dirk&rft.isbn=978-1-950737-13-0&rft.genre=proceeding&rft_id=info:doi/10.18653/v1/N19-1038&rft.btitle=Proceedings%20of%20the%202019%20Conference%20of%20the%20North%20American%20Chapter%20of%20the%20Association%20for%20Computational%20Linguistics:%20Human%20Language%20Tec
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record