Simple and Tight Device-Independent Security Proofs
dc.contributor.author
Arnon-Friedman, Rotem
dc.contributor.author
Renner, Renato
dc.contributor.author
Vidick, Thomas
dc.date.accessioned
2019-03-19T10:58:36Z
dc.date.available
2019-03-15T06:22:59Z
dc.date.available
2019-03-19T10:58:36Z
dc.date.issued
2019
dc.identifier.issn
0097-5397
dc.identifier.issn
1095-7111
dc.identifier.other
10.1137/18M1174726
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/331494
dc.identifier.doi
10.3929/ethz-b-000331494
dc.description.abstract
Device-independent security is the gold standard for quantum cryptography: not only is security based entirely on the laws of quantum mechanics, but it holds irrespective of any a priori assumptions on the quantum devices used in a protocol, making it particularly applicable in a quantum-wary environment. While the existence of device-independent protocols for tasks such as randomness expansion and quantum key distribution has recently been established, the underlying proofs of security remain very challenging, yield rather poor key rates, and demand very high quality quantum devices, thus making them all but impossible to implement in practice. We introduce a technique for the analysis of device-independent cryptographic protocols. We provide a flexible protocol and give a security proof that provides quantitative bounds that are asymptotically tight, even in the presence of general quantum adversaries. At a high level our approach amounts to establishing a reduction to the scenario in which the untrusted device operates in an identical and independent way in each round of the protocol. This is achieved by leveraging the sequential nature of the protocol and makes use of a newly developed tool, the “entropy accumulation theorem” of Dupuis, Fawzi, and Renner [Entropy Accumulation, preprint, 2016]. As concrete applications we give simple and modular security proofs for device-independent quantum key distribution and randomness expansion protocols based on the CHSH inequality. For both tasks, we establish essentially optimal asymptotic key rates and noise tolerance. In view of recent experimental progress, which has culminated in loophole-free Bell tests, it is likely that these protocols can be practically implemented in the near future.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
SIAM
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
quantum cryptography
en_US
dc.subject
device independence
en_US
dc.subject
key distribution
en_US
dc.subject
security proofs
en_US
dc.subject
randomness
en_US
dc.title
Simple and Tight Device-Independent Security Proofs
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2019-02-26
ethz.journal.title
SIAM Journal on Computing
ethz.journal.volume
48
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
SIAM j. comput. (Print)
ethz.pages.start
181
en_US
ethz.pages.end
225
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.publication.place
Philadelphia, PA
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03781 - Renner, Renato / Renner, Renato
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03781 - Renner, Renato / Renner, Renato
ethz.date.deposited
2019-03-15T06:23:01Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-03-19T10:58:57Z
ethz.rosetta.lastUpdated
2024-02-02T07:21:20Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Simple%20and%20Tight%20Device-Independent%20Security%20Proofs&rft.jtitle=SIAM%20Journal%20on%20Computing&rft.date=2019&rft.volume=48&rft.issue=1&rft.spage=181&rft.epage=225&rft.issn=0097-5397&1095-7111&rft.au=Arnon-Friedman,%20Rotem&Renner,%20Renato&Vidick,%20Thomas&rft.genre=article&rft_id=info:doi/10.1137/18M1174726&
Dateien zu diesem Eintrag
Publikationstyp
-
Journal Article [130586]