Semantic Segmentation of Aerial Images with an Ensemble of CNNS
dc.contributor.author
Marmanis, Dimitrios
dc.contributor.author
Wegner, Jan D.
dc.contributor.author
Galliani, Silvano
dc.contributor.author
Schindler, Konrad
dc.contributor.author
Datcu, Mihai
dc.contributor.author
Stilla, Uwe
dc.contributor.editor
Halounova, L.
dc.contributor.editor
Schindler, K.
dc.contributor.editor
Limpouch, A.
dc.contributor.editor
Pajdla, T.
dc.contributor.editor
Šafář, V.
dc.contributor.editor
Mayer, H.
dc.contributor.editor
Oude Elberink, S.
dc.contributor.editor
Mallet, C.
dc.contributor.editor
Rottensteiner, F.
dc.contributor.editor
Brédif, M.
dc.contributor.editor
Skaloud, J.
dc.contributor.editor
Stilla, U.
dc.date.accessioned
2019-05-15T07:53:19Z
dc.date.available
2019-04-18T13:48:13Z
dc.date.available
2019-05-15T07:53:19Z
dc.date.issued
2016
dc.identifier.issn
2194-9042
dc.identifier.issn
2194-9050
dc.identifier.other
10.5194/isprs-annals-III-3-473-2016
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/338696
dc.identifier.doi
10.3929/ethz-b-000338696
dc.description.abstract
This paper describes a deep learning approach to semantic segmentation of very high resolution (aerial) images. Deep neural architectures hold the promise of end-to-end learning from raw images, making heuristic feature design obsolete. Over the last decade this idea has seen a revival, and in recent years deep convolutional neural networks (CNNs) have emerged as the method of choice for a range of image interpretation tasks like visual recognition and object detection. Still, standard CNNs do not lend themselves to per-pixel semantic segmentation, mainly because one of their fundamental principles is to gradually aggregate information over larger and larger image regions, making it hard to disentangle contributions from different pixels. Very recently two extensions of the CNN framework have made it possible to trace the semantic information back to a precise pixel position: deconvolutional network layers undo the spatial downsampling, and Fully Convolution Networks (FCNs) modify the fully connected classification layers of the network in such a way that the location of individual activations remains explicit. We design a FCN which takes as input intensity and range data and, with the help of aggressive deconvolution and recycling of early network layers, converts them into a pixelwise classification at full resolution. We discuss design choices and intricacies of such a network, and demonstrate that an ensemble of several networks achieves excellent results on challenging data such as the ISPRS semantic labeling benchmark, using only the raw data as input.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Copernicus
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.title
Semantic Segmentation of Aerial Images with an Ensemble of CNNS
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution 3.0 Unported
ethz.journal.title
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
ethz.journal.volume
III-3
en_US
ethz.journal.abbreviated
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
ethz.pages.start
473
en_US
ethz.pages.end
480
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
2016 ISPRS Annual Congress of the Photogrammetry, Remote Sensing and Spatial Information Sciences
en_US
ethz.event.location
Prague, Czech Republic
en_US
ethz.event.date
July 12-19, 2016
en_US
ethz.identifier.wos
ethz.publication.place
Göttingen
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::03886 - Schindler, Konrad / Schindler, Konrad
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::03886 - Schindler, Konrad / Schindler, Konrad
ethz.date.deposited
2017-06-12T18:35:25Z
ethz.source
ECIT
ethz.identifier.importid
imp593655348c72a95287
ethz.identifier.importid
imp5936552392fff37331
ethz.ecitpid
pub:190611
ethz.ecitpid
pub:189421
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-04-18T13:48:55Z
ethz.rosetta.lastUpdated
2022-03-28T22:56:33Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/127738
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/126654
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Semantic%20Segmentation%20of%20Aerial%20Images%20with%20an%20Ensemble%20of%20CNNS&rft.jtitle=ISPRS%20Annals%20of%20the%20Photogrammetry,%20Remote%20Sensing%20and%20Spatial%20Information%20Sciences&rft.date=2016&rft.volume=III-3&rft.spage=473&rft.epage=480&rft.issn=2194-9042&2194-9050&rft.au=Marmanis,%20Dimitrios&Wegner,%20Jan%20D.&Galliani,%20Silvano&Schindler,%20Konrad&Datcu,%20Mihai&rft.genre=proceeding&rft_id=info:doi/10.5194/isprs-annals-III-3-473-2016&
Files in this item
Publication type
-
Conference Paper [35822]