Show simple item record

dc.contributor.author
Di Palma, Paolo R.
dc.contributor.author
Guyennon, Nicolas
dc.contributor.author
Parmigiani, Andrea
dc.contributor.author
Huber, Christian
dc.contributor.author
Heβe, Falk
dc.contributor.author
Romano, Emanuele
dc.date.accessioned
2019-04-29T06:42:30Z
dc.date.available
2019-04-27T16:54:23Z
dc.date.available
2019-04-29T06:42:30Z
dc.date.issued
2019
dc.identifier.issn
1468-8115
dc.identifier.issn
1468-8123
dc.identifier.other
10.1155/2019/6810467
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/339832
dc.identifier.doi
10.3929/ethz-b-000339832
dc.description.abstract
Transport processes in porous media have been traditionally studied through the parameterization of macroscale properties, by means of volume-averaging or upscaling methods over a representative elementary volume. The possibility of upscaling results from pore-scale simulations, to obtain volume-averaging properties useful for practical purpose, can enhance the understanding of transport effects that manifest at larger scales. Several studies have been carried out to investigate the impact of the geometric properties of porous media on transport processes for solute species. However, the range of pore-scale geometric properties, which can be investigated, is usually limited to the number of samples acquired from microcomputed tomography images of real porous media. The present study takes advantage of synthetic porous medium generation to propose a systematic analysis of the relationships between geometric features of the porous media and transport processes through direct simulations of fluid flow and advection-diffusion of a non-reactive solute. Numerical simulations are performed with the lattice Boltzmann method on synthetic media generated with a geostatistically based approach. Our findings suggest that the advective transport is primarily affected by the specific surface area and the mean curvature of the porous medium, while the effective diffusion coefficient scales as the inverse of the tortuosity squared. Finally, the possibility of estimating the hydrodynamic dispersion coefficient knowing only the geometric properties of porous media and the applied pressure gradient has been tested, within the range of tested porous media, against advection-diffusion simulations at low Reynolds (<10-1) and Peclet numbers ranging from 101 to 10-2.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Impact of Synthetic Porous Medium Geometric Properties on Solute Transport Using Direct 3D Pore-Scale Simulations
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2019-03-26
ethz.journal.title
Geofluids
ethz.journal.volume
11
en_US
ethz.journal.issue
6
en_US
ethz.pages.start
1812
en_US
ethz.size
14 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.publication.place
Oxford
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2019-04-27T16:54:24Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-04-29T06:42:43Z
ethz.rosetta.lastUpdated
2019-04-29T06:42:43Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.atitle=Impact%20of%20Synthetic%20Porous%20Medium%20Geometric%20Properties%20on%20Solute%20Transport%20Using%20Direct%203D%20Pore-Scale%20Simulations&amp;rft.jtitle=Geofluids&amp;rft.date=2019&amp;rft.volume=11&amp;rft.issue=6&amp;rft.spage=1812&amp;rft.issn=1468-8115&amp;1468-8123&amp;rft.au=Di%20Palma,%20Paolo%20R.&amp;Guyennon,%20Nicolas&amp;Parmigiani,%20Andrea&amp;Huber,%20Christian&amp;He%CE%B2e,%20Falk&amp;rft.genre=article&amp;
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record