Training Neural Nets to Learn Reactive Potential Energy Surfaces Using Interactive Quantum Chemistry in Virtual Reality
dc.contributor.author
Amabilino, Silvia
dc.contributor.author
Bratholm, Lars A.
dc.contributor.author
Bennie, Simon J.
dc.contributor.author
Vaucher, Alain C.
dc.contributor.author
Reiher, Markus
dc.contributor.author
Glowacki, David R.
dc.date.accessioned
2022-08-02T11:22:27Z
dc.date.available
2019-06-04T02:37:29Z
dc.date.available
2019-06-04T09:26:03Z
dc.date.available
2022-08-02T11:22:27Z
dc.date.issued
2019-05-23
dc.identifier.issn
1089-5639
dc.identifier.issn
1520-5215
dc.identifier.other
10.1021/acs.jpca.9b01006
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/345323
dc.identifier.doi
10.3929/ethz-b-000345323
dc.description.abstract
While the primary bottleneck to a number of computational workflows was not so long ago limited by processing power, the rise of machine learning technologies has resulted in an interesting paradigm shift, which places increasing value on issues related to data curation—that is, data size, quality, bias, format, and coverage. Increasingly, data-related issues are equally as important as the algorithmic methods used to process and learn from the data. Here we introduce an open-source graphics processing unit-accelerated neural network (NN) framework for learning reactive potential energy surfaces (PESs). To obtain training data for this NN framework, we investigate the use of real-time interactive ab initio molecular dynamics in virtual reality (iMD-VR) as a new data curation strategy that enables human users to rapidly sample geometries along reaction pathways. Focusing on hydrogen abstraction reactions of CN radical with isopentane, we compare the performance of NNs trained using iMD-VR data versus NNs trained using a more traditional method, namely, molecular dynamics (MD) constrained to sample a predefined grid of points along the hydrogen abstraction reaction coordinate. Both the NN trained using iMD-VR data and the NN trained using the constrained MD data reproduce important qualitative features of the reactive PESs, such as a low and early barrier to abstraction. Quantitative analysis shows that NN learning is sensitive to the data set used for training. Our results show that user-sampled structures obtained with the quantum chemical iMD-VR machinery enable excellent sampling in the vicinity of the minimum energy path (MEP). As a result, the NN trained on the iMD-VR data does very well predicting energies that are close to the MEP but less well predicting energies for “off-path” structures. The NN trained on the constrained MD data does better predicting high-energy off-path structures, given that it included a number of such structures in its training set.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Chemical Society
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Training Neural Nets to Learn Reactive Potential Energy Surfaces Using Interactive Quantum Chemistry in Virtual Reality
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2019-03-20
ethz.journal.title
The Journal of Physical Chemistry A
ethz.journal.volume
123
en_US
ethz.journal.issue
20
en_US
ethz.journal.abbreviated
J. phys. chem., A
ethz.pages.start
4486
en_US
ethz.pages.end
4499
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
A virtual laboratory for the investigation of complex reaction networks
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02543 - Inst. f. Molekulare Physikalische Wiss. / Institute of Molecular Physical Science::03736 - Reiher, Markus / Reiher, Markus
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02543 - Inst. f. Molekulare Physikalische Wiss. / Institute of Molecular Physical Science::03736 - Reiher, Markus / Reiher, Markus
ethz.grant.agreementno
ETH-20 15-1
ethz.grant.fundername
ETHZ
ethz.grant.funderDoi
10.13039/501100003006
ethz.grant.program
ETH Grants
ethz.date.deposited
2019-06-04T02:37:41Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-06-04T09:26:14Z
ethz.rosetta.lastUpdated
2024-02-02T17:45:27Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Training%20Neural%20Nets%20to%20Learn%20Reactive%20Potential%20Energy%20Surfaces%20Using%20Interactive%20Quantum%20Chemistry%20in%20Virtual%20Reality&rft.jtitle=The%20Journal%20of%20Physical%20Chemistry%20A&rft.date=2019-05-23&rft.volume=123&rft.issue=20&rft.spage=4486&rft.epage=4499&rft.issn=1089-5639&1520-5215&rft.au=Amabilino,%20Silvia&Bratholm,%20Lars%20A.&Bennie,%20Simon%20J.&Vaucher,%20Alain%20C.&Reiher,%20Markus&rft.genre=article&rft_id=info:doi/10.1021/acs.jpca.9b01006&
Files in this item
Publication type
-
Journal Article [132175]