Zur Kurzanzeige

dc.contributor.author
Parmigiani, Andrea
dc.contributor.author
Di Palma, Paolo R.
dc.contributor.author
Leclaire, Sébastien
dc.contributor.author
Habib, Faraz
dc.contributor.author
Kong, Xiang-Zhao
dc.date.accessioned
2019-06-12T13:54:57Z
dc.date.available
2019-06-12T02:09:47Z
dc.date.available
2019-06-12T13:54:57Z
dc.date.issued
2019
dc.identifier.issn
1468-8115
dc.identifier.issn
1468-8123
dc.identifier.other
10.1155/2019/5176410
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/346884
dc.identifier.doi
10.3929/ethz-b-000346884
dc.description.abstract
Phase separation of formation fluids in the subsurface introduces hydrodynamic perturbations which are critical for mass and energy transport of geofluids. Here, we present pore-scale lattice-Boltzmann simulations to investigate the hydrodynamical response of a porous system to the emergence of non-wetting droplets under background hydraulic gradients. A wide parameter space of capillary number and fluid saturation is explored to characterize the droplet evolution, the droplet size and shape distribution, and the capillary-clogging patterns. We find that clogging is favored by high capillary stress; nonetheless, clogging occurs at high non-wetting saturation (larger than 0.3), denoting the importance of convective transport on droplet growth and permeability. Moreover, droplets are more sheared at low capillary number; however, solid matrix plays a key role on droplet’s volume-to-surface ratio.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Characterization of Transport-Enhanced Phase Separation in Porous Media Using a Lattice-Boltzmann Method
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2019-05-14
ethz.journal.title
Geofluids
ethz.journal.volume
2019
en_US
ethz.pages.start
5176410
en_US
ethz.size
13 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Solute and Particles swarms in bifurcating fractures: A new paradigm in imaging and characterizing flow structures and solute transport in three dimensions
en_US
ethz.identifier.wos
ethz.publication.place
Oxford
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erdwissenschaften / Dep. of Earth Sciences::02506 - Institut für Geophysik / Institute of Geophysics::09494 - Saar, Martin O. / Saar, Martin O.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erdwissenschaften / Dep. of Earth Sciences::02506 - Institut für Geophysik / Institute of Geophysics::09494 - Saar, Martin O. / Saar, Martin O.
ethz.grant.agreementno
172760
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projektförderung in Mathematik, Natur- und Ingenieurwissenschaften (Abteilung II)
ethz.date.deposited
2019-06-12T02:09:50Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-06-12T13:55:12Z
ethz.rosetta.lastUpdated
2021-02-15T04:46:27Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Characterization%20of%20Transport-Enhanced%20Phase%20Separation%20in%20Porous%20Media%20Using%20a%20Lattice-Boltzmann%20Method&rft.jtitle=Geofluids&rft.date=2019&rft.volume=2019&rft.spage=5176410&rft.issn=1468-8115&1468-8123&rft.au=Parmigiani,%20Andrea&Di%20Palma,%20Paolo%20R.&Leclaire,%20S%C3%A9bastien&Habib,%20Faraz&Kong,%20Xiang-Zhao&rft.genre=article&rft_id=info:doi/10.1155/2019/5176410&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige