Show simple item record

dc.contributor.author
Kammer, David S.
dc.contributor.author
Svetlizky, Ilya
dc.contributor.author
Cohen, Gil
dc.contributor.author
Fineberg, Jay
dc.date.accessioned
2019-11-07T08:56:05Z
dc.date.available
2019-06-19T07:33:13Z
dc.date.available
2019-06-20T09:05:47Z
dc.date.available
2019-11-07T08:56:05Z
dc.date.issued
2018-07-04
dc.identifier.issn
2375-2548
dc.identifier.other
10.1126/sciadv.aat5622
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/348429
dc.identifier.doi
10.3929/ethz-b-000348429
dc.description.abstract
The rupture fronts that mediate the onset of frictional sliding may propagate at speeds below the Rayleigh wave speed or may surpass the shear wave speed and approach the longitudinal wave speed. While the conditions for the transition from sub-Rayleigh to supershear propagation have been studied extensively, little is known about what dictates supershear rupture speeds and how the interplay between the stresses that drive propagation and interface properties that resist motion affects them. By combining laboratory experiments and numerical simulations that reflect natural earthquakes, we find that supershear rupture propagation speeds can be predicted and described by a fracture mechanics–based equation of motion. This equation of motion quantitatively predicts rupture speeds, with the velocity selection dictated by the interface properties and stress. Our results reveal a critical rupture length, analogous to Griffith’s length for sub-Rayleigh cracks, below which supershear propagation is impossible. Above this critical length, supershear ruptures can exist, once excited, even for extremely low preexisting stress levels. These results significantly improve our fundamental understanding of what governs the speed of supershear earthquakes, with direct and important implications for interpreting their unique supershear seismic radiation patterns.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
AAAS
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.title
The equation of motion for supershear frictional rupture fronts
en_US
dc.type
Journal Article
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
dc.date.published
2018-07-18
ethz.journal.title
Science Advances
ethz.journal.volume
4
en_US
ethz.journal.issue
7
en_US
ethz.journal.abbreviated
Sci Adv
ethz.pages.start
eaat5622
en_US
ethz.size
9 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02606 - Institut für Baustoffe (IfB) / Institute for Building Materials::09650 - Kammer, David / Kammer, David
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02606 - Institut für Baustoffe (IfB) / Institute for Building Materials::09650 - Kammer, David / Kammer, David
en_US
ethz.identifier.orcidWorkCode
47472987
ethz.date.deposited
2019-06-19T07:33:19Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-06-20T09:05:58Z
ethz.rosetta.lastUpdated
2022-03-29T00:14:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=The%20equation%20of%20motion%20for%20supershear%20frictional%20rupture%20fronts&rft.jtitle=Science%20Advances&rft.date=2018-07-04&rft.volume=4&rft.issue=7&rft.spage=eaat5622&rft.issn=2375-2548&rft.au=Kammer,%20David%20S.&Svetlizky,%20Ilya&Cohen,%20Gil&Fineberg,%20Jay&rft.genre=article&article&rft_id=info:doi/10.1126/sciadv.aat5622&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record