Show simple item record

dc.contributor.author
Hedinger, Raffael
dc.contributor.supervisor
Onder, Christopher
dc.contributor.supervisor
Eriksson, Lars
dc.contributor.supervisor
Fischer, Wolfgang
dc.contributor.supervisor
Noiray, Nicolas
dc.date.accessioned
2019-08-20T06:39:24Z
dc.date.available
2019-08-19T14:58:48Z
dc.date.available
2019-08-20T06:39:24Z
dc.date.issued
2019-02-05
dc.identifier.uri
http://hdl.handle.net/20.500.11850/359342
dc.identifier.doi
10.3929/ethz-b-000359342
dc.description.abstract
In the first part of this thesis, generally valid rules for optimal control strategies during the catalyst heating phase at a high value of ignition retardation are identified experimentally. To this end, the effects of variations in control strategies are analyzed. Specifically, variations are analyzed in the center of combustion $\theta_{\mathrm{50}}$, in the air-to-fuel ratio $\lambda$ and in maldistributions in both quantities among individual cylinders on the behavior of the engine in idling conditions after a cold start. This behavior includes the fuel consumption, the heat-up behavior of the three-way catalytic converter, and the cumulative tailpipe emission of HC, CO, and NO$_\mathrm{x}$. A dedicated cylinder-individual, model-based, multi-variable controller is developed and used in experiments in order to isolate the effects of the individual control strategy variations as much as possible. An optimal control problem for a gasoline engine at a cold start is formulated which is used to interpret the experimental data obtained. The corresponding goal is to minimize the fuel consumption during an initial idling phase of a fixed duration while guaranteeing that the three-way catalytic converter reaches a sufficiently high final temperature and at the same time ensuring that the cumulative emissions stay below a given limit. The experimental data indicates that the engine should be operated with a maximum ignition retardation and at an air-to-fuel ratio of 5\%-10\% lean in order to reach any temperature inside the three-way catalytic converter as quickly as possible concurrently with minimum tailpipe emissions and at a minimum possible fuel consumption. In the second part of this thesis, trajectory tracking algorithms for gasoline engines are devised. Specifically, a simultaneous and precise reference tracking in engine speed, air-to-fuel ratio, and center of combustion is enabled. Such a tracking of multiple reference trajectories requires a coordinated control action for the air path, the fuel path, and the ignition timing actuators. Combining a dedicated feedforward and feedback controller structure and multivariable model-based norm-optimal parallel iterative learning control strategies, feedforward control trajectories are generated that enable a precise tracking of desired reference trajectories. Experimental results show the effectiveness of the proposed methodology.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Optimal Cold-Start Control Strategies for Gasoline Engines
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2019-08-20
ethz.size
113 p.
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::620 - Engineering & allied operations
ethz.identifier.diss
25994
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::03286 - Guzzella, Lino (emeritus) / Guzzella, Lino (emeritus)::08840 - Onder, Christopher (Tit.-Prof.)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::03286 - Guzzella, Lino (emeritus) / Guzzella, Lino (emeritus)::08840 - Onder, Christopher (Tit.-Prof.)
en_US
ethz.relation.continues
10.3929/ethz-b-000195798
ethz.relation.continues
20.500.11850/338807
ethz.date.deposited
2019-08-19T14:58:56Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-08-20T06:39:46Z
ethz.rosetta.lastUpdated
2023-02-06T17:32:12Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Optimal%20Cold-Start%20Control%20Strategies%20for%20Gasoline%20Engines&rft.date=2019-02-05&rft.au=Hedinger,%20Raffael&rft.genre=unknown&rft.btitle=Optimal%20Cold-Start%20Control%20Strategies%20for%20Gasoline%20Engines
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record