Region of attraction analysis with Integral Quadratic Constraints
dc.contributor.author
Iannelli, Andrea
dc.contributor.author
Seiler, Peter
dc.contributor.author
Marcos, Andrés
dc.date.accessioned
2021-08-27T11:25:52Z
dc.date.available
2019-09-03T02:32:22Z
dc.date.available
2019-09-03T10:07:13Z
dc.date.available
2021-01-17T17:16:53Z
dc.date.available
2021-01-18T07:36:07Z
dc.date.available
2021-08-27T11:25:52Z
dc.date.issued
2019-11
dc.identifier.issn
0005-1098
dc.identifier.other
10.1016/j.automatica.2019.108543
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/361978
dc.identifier.doi
10.3929/ethz-b-000361978
dc.description.abstract
A general framework is presented to estimate the Region of Attraction of attracting equilibrium points. The system is described by a feedback connection of a nonlinear (polynomial) system and a bounded operator. The input/output behavior of the operator is characterized using an Integral Quadratic Constraint. This allows to analyze generic problems including, for example, hard-nonlinearities and different classes of uncertainties, adding to the state of practice in the field which is typically limited to polynomial vector fields. The IQC description is also nonrestrictive, with the main result given for both hard and soft factorizations. Optimization algorithms based on Sum of Squares techniques are then proposed, with the aim to enlarge the inner estimates of the ROA. Numerical examples are provided to show the applicability of the approaches. These include a saturated plant where bounds on the states are exploited to refine the sector description, and a case study with parametric uncertainties for which the conservativeness of the results is reduced by using soft IQCs.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Region of attraction
en_US
dc.subject
Integral quadratic constraints
en_US
dc.subject
Nonlinear uncertain systems
en_US
dc.subject
Local analysis
en_US
dc.subject
Dissipation inequality
en_US
dc.title
Region of attraction analysis with Integral Quadratic Constraints
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2019-08-28
ethz.journal.title
Automatica
ethz.journal.volume
109
en_US
ethz.pages.start
108543
en_US
ethz.size
10 p. (published version); 11 p. (accepted version)
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Kidlington
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::08814 - Smith, Roy (Tit.-Prof.)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::08814 - Smith, Roy (Tit.-Prof.)
ethz.date.deposited
2019-09-03T02:32:26Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.date.embargoend
2021-08-27
ethz.rosetta.installDate
2019-09-03T10:07:23Z
ethz.rosetta.lastUpdated
2022-03-29T11:20:31Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Region%20of%20attraction%20analysis%20with%20Integral%20Quadratic%20Constraints&rft.jtitle=Automatica&rft.date=2019-11&rft.volume=109&rft.spage=108543&rft.issn=0005-1098&rft.au=Iannelli,%20Andrea&Seiler,%20Peter&Marcos,%20Andr%C3%A9s&rft.genre=article&rft_id=info:doi/10.1016/j.automatica.2019.108543&
Files in this item
Publication type
-
Journal Article [130596]