Res3ATN – Deep 3D Residual Attention Network for Hand Gesture Recognition in Videos
dc.contributor.author
Dhingra, Naina
dc.contributor.author
Kunz, Andreas
dc.date.accessioned
2020-02-13T08:44:54Z
dc.date.available
2019-09-23T04:59:30Z
dc.date.available
2019-09-23T06:17:23Z
dc.date.available
2019-09-23T06:19:16Z
dc.date.available
2020-02-13T08:33:51Z
dc.date.available
2020-02-13T08:44:54Z
dc.date.issued
2019-09
dc.identifier.isbn
978-1-7281-3131-3
en_US
dc.identifier.other
10.1109/3DV.2019.00061
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/365762
dc.identifier.doi
10.3929/ethz-b-000365762
dc.description.abstract
Hand gesture recognition is a strenuous task to solve in videos. In this paper, we use a 3D residual attention Network which is trained end to end for hand gesture recognition. Based on the stacked multiple attention blocks, we build a 3D network which generates different features at each attention block. Our 3D attention based residual Network (Res3ATN) can be build and extended to very Deep layers. Using this network, an extensive analysis is performed on other 3D networks based on three publicly available datasets. The Res3ATN network performance is compared to C3D, ResNet-10, and ResNext-101 networks. The comparison shows that the 3D residual attention network is robust and is able to learn and classify the gestures with a better accuracy, thus outperforming existing networks.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Deep Learning
en_US
dc.subject
Gesture Recognition
en_US
dc.title
Res3ATN – Deep 3D Residual Attention Network for Hand Gesture Recognition in Videos
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2019-10-31
ethz.book.title
2019 International Conference on 3D Vision (3DV)
en_US
ethz.pages.start
491
en_US
ethz.pages.end
501
en_US
ethz.size
11 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
International Conference on 3D Vision (3DV 2019)
en_US
ethz.event.location
Quebec City, Canada
en_US
ethz.event.date
September 16-19, 2019
en_US
ethz.notes
Conference lecture held on September 16, 2019
en_US
ethz.grant
Barrierefreie Besprechungszimmer für sehbehinderte Menschen
en_US
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02623 - Inst. f. Werkzeugmaschinen und Fertigung / Inst. Machine Tools and Manufacturing::03641 - Wegener, Konrad / Wegener, Konrad
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02623 - Inst. f. Werkzeugmaschinen und Fertigung / Inst. Machine Tools and Manufacturing::03641 - Wegener, Konrad / Wegener, Konrad::08844 - Kunz, Andreas (Tit.-Prof.) / Kunz, Andreas (Tit.-Prof.)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02623 - Inst. f. Werkzeugmaschinen und Fertigung / Inst. Machine Tools and Manufacturing::03641 - Wegener, Konrad / Wegener, Konrad
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02623 - Inst. f. Werkzeugmaschinen und Fertigung / Inst. Machine Tools and Manufacturing::03641 - Wegener, Konrad / Wegener, Konrad::08844 - Kunz, Andreas (Tit.-Prof.) / Kunz, Andreas (Tit.-Prof.)
ethz.grant.agreementno
177542
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2019-09-23T04:59:38Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-02-13T08:34:03Z
ethz.rosetta.lastUpdated
2022-03-29T00:59:11Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Res3ATN%20%E2%80%93%20Deep%203D%20Residual%20Attention%20Network%20for%20Hand%20Gesture%20Recognition%20in%20Videos&rft.date=2019-09&rft.spage=491&rft.epage=501&rft.au=Dhingra,%20Naina&Kunz,%20Andreas&rft.isbn=978-1-7281-3131-3&rft.genre=proceeding&rft_id=info:doi/10.1109/3DV.2019.00061&rft.btitle=2019%20International%20Conference%20on%203D%20Vision%20(3DV)
Files in this item
Publication type
-
Conference Paper [33060]