Dynamic monetary risk measures for bounded discrete-time processes
dc.contributor.author
Cheridito, Patrick
dc.contributor.author
Delbaen, Freddy
dc.contributor.author
Kupper, Michael
dc.date.accessioned
2021-07-28T15:51:30Z
dc.date.available
2017-06-09T12:03:57Z
dc.date.available
2021-07-28T15:51:30Z
dc.date.issued
2006
dc.identifier.issn
1083-6489
dc.identifier.other
10.1214/EJP.v11-302
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/37789
dc.identifier.doi
10.3929/ethz-b-000037789
dc.description.abstract
We study dynamic monetary risk measures that depend on bounded discrete-time processes describing the evolution of financial values. The time horizon can be finite or infinite. We call a dynamic risk measure time-consistent if it assigns to a process of financial values the same risk irrespective of whether it is calculated directly or in two steps backwards in time. We show that this condition translates into a decomposition property for the corresponding acceptance sets, and we demonstrate how time-consistent dynamic monetary risk measures can be constructed by pasting together one-period risk measures. For conditional coherent and convex monetary risk measures, we provide dual representations of Legendre--Fenchel type based on linear functionals induced by adapted increasing processes of integrable variation. Then we give dual characterizations of time-consistency for dynamic coherent and convex monetary risk measures. To this end, we introduce a concatenation operation for adapted increasing processes of integrable variation, which generalizes the pasting of probability measures. In the coherent case, time-consistency corresponds to stability under concatenation in the dual. For dynamic convex monetary risk measures, the dual characterization of time-consistency generalizes to a condition on the family of convex conjugates of the conditional risk measures at different times. The theoretical results are applied by discussing the time-consistency of various specific examples of dynamic monetary risk measures that depend on bounded discrete-time processes.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Institute of Mathematical Statistics
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.subject
Conditional monetary risk measures
en_US
dc.subject
Conditional monetary utility functions
en_US
dc.subject
Conditional dual representations
en_US
dc.subject
Dynamic monetary risk measures
en_US
dc.subject
Dynamic monetary utility measures
en_US
dc.subject
Time-consistency
en_US
dc.subject
Decomposition property of acceptance sets
en_US
dc.subject
Concatenation of adapted increasing processes of integrable variation
en_US
dc.title
Dynamic monetary risk measures for bounded discrete-time processes
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 3.0 Unported
dc.date.published
2016-05-31
ethz.journal.title
Electronic Journal of Probability
ethz.journal.volume
11
en_US
ethz.journal.abbreviated
Electron. J. Probab.
ethz.pages.start
57
en_US
ethz.pages.end
106
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Seattle, WA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
03440 - Delbaen, Freddy
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::09557 - Cheridito, Patrick / Cheridito, Patrick
en_US
ethz.leitzahl.certified
03440 - Delbaen, Freddy
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::09557 - Cheridito, Patrick / Cheridito, Patrick
ethz.date.deposited
2017-06-09T12:04:01Z
ethz.source
ECIT
ethz.identifier.importid
imp59364e414b46d68173
ethz.ecitpid
pub:60337
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-15T15:45:00Z
ethz.rosetta.lastUpdated
2022-03-29T10:47:31Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Dynamic%20monetary%20risk%20measures%20for%20bounded%20discrete-time%20processes&rft.jtitle=Electronic%20Journal%20of%20Probability&rft.date=2006&rft.volume=11&rft.spage=57&rft.epage=106&rft.issn=1083-6489&rft.au=Cheridito,%20Patrick&Delbaen,%20Freddy&Kupper,%20Michael&rft.genre=article&rft_id=info:doi/10.1214/EJP.v11-302&
Files in this item
Publication type
-
Journal Article [132360]