Semantic Understanding of Foggy Scenes with Purely Synthetic Data
dc.contributor.author
Hahner, Martin
dc.contributor.author
Dai, Dengxin
dc.contributor.author
Sakaridis, Christos
dc.contributor.author
Zaech, Jan-Nico
dc.contributor.author
Van Gool, Luc
dc.contributor.editor
Hahner, Martin
dc.date.accessioned
2020-04-23T11:17:50Z
dc.date.available
2019-12-25T11:53:32Z
dc.date.available
2020-01-06T09:45:53Z
dc.date.available
2020-01-06T09:53:22Z
dc.date.available
2020-01-07T12:47:58Z
dc.date.available
2020-01-08T09:06:52Z
dc.date.available
2020-04-23T11:17:50Z
dc.date.issued
2019
dc.identifier.isbn
978-1-5386-7024-8
en_US
dc.identifier.other
10.1109/itsc.2019.8917518
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/387150
dc.identifier.doi
10.3929/ethz-b-000387150
dc.description.abstract
This work addresses the problem of semantic scene understanding under foggy road conditions. Although marked progress has been made in semantic scene understanding over the recent years, it is mainly concentrated on clear weather outdoor scenes. Extending semantic segmentation methods to adverse weather conditions like fog is crucially important for outdoor applications such as self-driving cars. In this paper, we propose a novel method, which uses purely synthetic data to improve the performance on unseen real-world foggy scenes captured in the streets of Zurich and its surroundings. Our results highlight the potential and power of photo-realistic synthetic images for training and especially fine-tuning deep neural nets. Our contributions are threefold, 1) we created a purely synthetic, high-quality foggy dataset of 25,000 unique outdoor scenes, that we call Foggy Synscapes and plan to release publicly 2) we show that with this data we outperform previous approaches on real-world foggy test data 3) we show that a combination of our data and previously used data can even further improve the performance on real-world foggy data.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
machine learning
en_US
dc.subject
computer vision
en_US
dc.subject
autonomous driving
en_US
dc.subject
adverse weather
en_US
dc.title
Semantic Understanding of Foggy Scenes with Purely Synthetic Data
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2019-10-28
ethz.book.title
2019 IEEE Intelligent Transportation Systems Conference (ITSC)
en_US
ethz.pages.start
3675
en_US
ethz.pages.end
3681
en_US
ethz.size
8 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
22nd IEEE Intelligent Transportation Systems Conference (ITSC 2019)
en_US
ethz.event.location
Auckland, New Zealand
en_US
ethz.event.date
October 27-30, 2019
en_US
ethz.notes
Conference lecture held on October 30, 2019
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
en_US
ethz.tag
fog
en_US
ethz.relation.isPartOf
10.3929/ethz-b-000578470
ethz.date.deposited
2019-12-25T11:53:40Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-01-06T09:53:32Z
ethz.rosetta.lastUpdated
2021-02-15T10:33:34Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Semantic%20Understanding%20of%20Foggy%20Scenes%20with%20Purely%20Synthetic%20Data&rft.date=2019&rft.spage=3675&rft.epage=3681&rft.au=Hahner,%20Martin&Dai,%20Dengxin&Sakaridis,%20Christos&Zaech,%20Jan-Nico&Van%20Gool,%20Luc&rft.isbn=978-1-5386-7024-8&rft.genre=proceeding&rft_id=info:doi/10.1109/itsc.2019.8917518&rft.btitle=2019%20IEEE%20Intelligent%20Transportation%20Systems%20Conference%20(ITSC)
Files in this item
Publication type
-
Conference Paper [35280]