Show simple item record

dc.contributor.author
Zilly, Julian
dc.contributor.author
Hetzel, Lorenz
dc.contributor.author
Censi, Andrea
dc.contributor.author
Frazzoli, Emilio
dc.date.accessioned
2020-09-25T07:53:12Z
dc.date.available
2019-12-29T13:37:14Z
dc.date.available
2020-01-06T08:23:18Z
dc.date.available
2020-06-16T05:53:03Z
dc.date.available
2020-09-25T07:53:12Z
dc.date.issued
2019-12
dc.identifier.uri
http://hdl.handle.net/20.500.11850/387212
dc.identifier.doi
10.3929/ethz-b-000387212
dc.description.abstract
We examine the influence of input data representations on learning complexity. For learning, we posit that each model implicitly uses a candidate model distribution for unexplained variations in the data, its noise model. If the model distribution is not well aligned to the true distribution, then even relevant variations will be treated as noise. Crucially however, the alignment of model and true distribution can be changed, albeit implicitly, by changing data representations." Better" representations can better align the model to the true distribution, making it easier to approximate the input-output relationship in the data without discarding useful data variations. To quantify this alignment effect of data representations on the difficulty of a learning task, we make use of an existing task complexity score and show its connection to the representation-dependent information coding length of the input. Empirically we extract the necessary statistics from a linear regression approximation and show that these are sufficient to predict relative learning performance outcomes of different data representations and neural network types obtained when utilizing an extensive neural network architecture search. We conclude that to ensure better learning outcomes, representations may need to be tailored to both task and model to align with the implicit distribution of model and task.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich, Institute for Dynamic Systems and Control
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
machine learning
en_US
dc.subject
representation learning
en_US
dc.subject
information theory
en_US
dc.title
Quantifying the effect of representations on task complexity
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
13 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
33rd Conference on Neural Information Processing Systems: Workshop on Information Theory and Machine Learning (NeurIPS 2019)
en_US
ethz.event.location
Vancouver, Canada
en_US
ethz.event.date
December 8-14, 2019
en_US
ethz.notes
Conference lecture held on December 13, 2019
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::09574 - Frazzoli, Emilio / Frazzoli, Emilio
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::09574 - Frazzoli, Emilio / Frazzoli, Emilio
en_US
ethz.date.deposited
2019-12-29T13:37:24Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-01-06T08:23:31Z
ethz.rosetta.lastUpdated
2021-02-15T17:31:42Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Quantifying%20the%20effect%20of%20representations%20on%20task%20complexity&rft.date=2019-12&rft.au=Zilly,%20Julian&Hetzel,%20Lorenz&Censi,%20Andrea&Frazzoli,%20Emilio&rft.genre=proceeding&rft.btitle=Quantifying%20the%20effect%20of%20representations%20on%20task%20complexity
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record