Self-Supervised 3D Hand Pose Estimation Through Training by Fitting
dc.contributor.author
Wan, Chengde
dc.contributor.author
Probst, Thomas
dc.contributor.author
Van Gool, Luc
dc.contributor.author
Yao, Angela
dc.date.accessioned
2020-02-13T12:34:10Z
dc.date.available
2020-01-17T22:56:55Z
dc.date.available
2020-01-20T06:48:24Z
dc.date.available
2020-01-20T06:50:33Z
dc.date.available
2020-02-13T12:34:10Z
dc.date.issued
2019-06-16
dc.identifier.uri
http://hdl.handle.net/20.500.11850/391652
dc.identifier.doi
10.3929/ethz-b-000391652
dc.description.abstract
We present a self-supervision method for 3D hand pose estimation from depth maps. We begin with a neural network initialized with synthesized data and fine-tune it on real but unlabelled depth maps by minimizing a set of datafitting terms. By approximating the hand surface with a set of spheres, we design a differentiable hand renderer to align estimates by comparing the rendered and input depth maps. In addition, we place a set of priors including a data-driven term to further regulate the estimate’s kinematic feasibility. Our method makes highly accurate estimates comparable to current supervised methods which require large amounts of labelled training samples, thereby advancing state-of-the-art in unsupervised learning for hand pose estimation.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Computer Vision Foundation (CVF)
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Self-Supervised 3D Hand Pose Estimation Through Training by Fitting
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.pages.start
10853
en_US
ethz.pages.end
10862
en_US
ethz.size
10 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019)
en_US
ethz.event.location
Long Beach, CA, USA
en_US
ethz.event.date
June 16-20, 2019
en_US
ethz.publication.place
s.l.
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc / Van Gool, Luc
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc / Van Gool, Luc
en_US
ethz.identifier.url
http://openaccess.thecvf.com/content_CVPR_2019/html/Wan_Self-Supervised_3D_Hand_Pose_Estimation_Through_Training_by_Fitting_CVPR_2019_paper.html
ethz.relation.isOriginalFormOf
20.500.11850/397699
ethz.date.deposited
2020-01-17T22:57:02Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-02-13T12:34:21Z
ethz.rosetta.lastUpdated
2021-02-15T08:02:13Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Self-Supervised%203D%20Hand%20Pose%20Estimation%20Through%20Training%20by%20Fitting&rft.date=2019-06-16&rft.spage=10853&rft.epage=10862&rft.au=Wan,%20Chengde&Probst,%20Thomas&Van%20Gool,%20Luc&Yao,%20Angela&rft.genre=proceeding&rft.btitle=Self-Supervised%203D%20Hand%20Pose%20Estimation%20Through%20Training%20by%20Fitting
Dateien zu diesem Eintrag
Publikationstyp
-
Conference Paper [33136]