Show simple item record

dc.contributor.author
Mavrodiev, Pavlin
dc.contributor.author
Fleischmann, Daniela
dc.contributor.author
Kerth, Gerald
dc.contributor.author
Schweitzer, Frank
dc.date.accessioned
2020-01-29T15:56:10Z
dc.date.available
2020-01-25T08:25:29Z
dc.date.available
2020-01-27T06:53:07Z
dc.date.available
2020-01-29T15:56:10Z
dc.date.issued
2019
dc.identifier.other
10.1101/843938
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/394002
dc.description.abstract
Leading-following behaviour in Bechstein's bats transfers information about suitable roost sites from experienced to inexperienced individuals, and thus ensures communal roosting. We analyze 9 empirical data sets about individualized leading-following (L/F) events, to infer rules that likely determine the formation of L/F pairs. To test these rules, we propose five models that differ regarding the empirical information taken into account to form L/F pairs: activity of a bat in exploring possible roosts, tendency to lead and to follow. The comparison with empirical data was done by constructing social networks from the observed L/F events, on which centralities were calculated to quantify the importance of individuals in these L/F networks. The centralities from the empirical network are then compared for statistical differences with the model-generated centralities obtained from $10^{5}$ model realizations. We find that two models perform well in comparison with the empirical data: One model assumes an individual tendency to lead, but chooses followers at random. The other model assumes an individual tendency to follow and chooses leaders according to their overall activity. We note that neither individual preferences for specific individuals, nor other influences such as kinship or reciprocity, are taken into account to reproduce the empirical findings.
en_US
dc.language.iso
en
en_US
dc.publisher
Cold Spring Harbor Laboratory
en_US
dc.title
Data-driven modeling of leading-following behavior in Bechstein's bats
en_US
dc.type
Working Paper
dc.date.published
2019-11-15
ethz.journal.title
bioRxiv
ethz.publication.place
Cold Spring Harbor, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::03682 - Schweitzer, Frank / Schweitzer, Frank
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::03682 - Schweitzer, Frank / Schweitzer, Frank
ethz.date.deposited
2020-01-25T08:25:38Z
ethz.source
BATCH
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-01-29T15:56:20Z
ethz.rosetta.lastUpdated
2022-03-29T00:53:04Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Data-driven%20modeling%20of%20leading-following%20behavior%20in%20Bechstein's%20bats&rft.jtitle=bioRxiv&rft.date=2019&rft.au=Mavrodiev,%20Pavlin&Fleischmann,%20Daniela&Kerth,%20Gerald&Schweitzer,%20Frank&rft.genre=preprint&rft_id=info:doi/10.1101/843938&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record