Show simple item record

dc.contributor.author
Karimi Jaghargh, Mohammad R.
dc.contributor.author
Krause, Andreas
dc.contributor.author
Lattanzi, Silvio
dc.contributor.author
Vassilvtiskii, Sergei
dc.contributor.editor
Chaudhuri, Kamalika
dc.contributor.editor
Sugiyama, Masashi
dc.date.accessioned
2020-03-05T07:57:47Z
dc.date.available
2020-01-27T12:45:14Z
dc.date.available
2020-01-31T13:08:57Z
dc.date.available
2020-02-19T11:09:52Z
dc.date.available
2020-03-05T07:57:47Z
dc.date.issued
2019
dc.identifier.issn
2640-3498
dc.identifier.uri
http://hdl.handle.net/20.500.11850/394304
dc.language.iso
en
en_US
dc.publisher
PMLR
en_US
dc.title
Consistent Online Optimization: Convex and Submodular
en_US
dc.type
Conference Paper
ethz.book.title
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019)
en_US
ethz.journal.title
Proceedings of Machine Learning Research
ethz.journal.volume
89
en_US
ethz.pages.start
2241
en_US
ethz.pages.end
2250
en_US
ethz.event
22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019)
en_US
ethz.event.location
Okinawa, Japan
en_US
ethz.event.date
April 16-18, 2019
en_US
ethz.grant
Scaling Up by Scaling Down: Big ML via Small Coresets
en_US
ethz.identifier.wos
ethz.publication.place
Cambridge, MA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.identifier.url
http://proceedings.mlr.press/v89/jaghargh19a.html
ethz.grant.agreementno
167212
ethz.grant.agreementno
167212
ethz.grant.fundername
SNF
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
NFP 75: Gesuch
ethz.date.deposited
2020-01-27T12:45:21Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-01-31T13:09:08Z
ethz.rosetta.lastUpdated
2021-02-15T08:31:49Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Consistent%20Online%20Optimization:%20Convex%20and%20Submodular&rft.jtitle=Proceedings%20of%20Machine%20Learning%20Research&rft.date=2019&rft.volume=89&rft.spage=2241&rft.epage=2250&rft.issn=2640-3498&rft.au=Karimi%20Jaghargh,%20Mohammad%20R.&Krause,%20Andreas&Lattanzi,%20Silvio&Vassilvtiskii,%20Sergei&rft.genre=proceeding&rft.btitle=Proceedings%20of%20the%2022nd%20International%20Conference%20on%20Artificial%20Intelligence%20and%20Statistics%20(AISTATS%202019)
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record