Show simple item record

dc.contributor.author
Hänni, Dominic D.
dc.contributor.author
Schädler, Rainer
dc.contributor.author
Abhari, Reza S.
dc.contributor.author
Kalfas, Anestis I.
dc.contributor.author
Schmid, Gregor
dc.contributor.author
Lutum, Ewald
dc.contributor.author
Lecoq, Nicolas
dc.date.accessioned
2020-01-29T08:26:26Z
dc.date.available
2020-01-28T16:14:39Z
dc.date.available
2020-01-29T07:29:49Z
dc.date.available
2020-01-29T08:26:26Z
dc.date.issued
2019-01-15
dc.identifier.other
10.33737/gpps19-tc-014
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/395072
dc.identifier.doi
10.3929/ethz-b-000395072
dc.description.abstract
Efficiency improvements for gas turbines are strongly coupled with increasing turbine inlet temperatures. This imposes new challenges for designers for efficient and adequate cooling of turbine components. Modern gas turbines use bleed air from the compressor to inject into the stator/rotor rim seal cavity to prevent hot gas ingestion from the main flow, while cooling the rotor disk. This purge flow interacts with the main flow field and static pressure field imposed by the turbine blades. The complex interaction causes nonuniform and jet-like penetration of the purge flow into the main flow field and therefore affects the endwall heat transfer on the rotor. In order to improve the understanding of purge flow effects on rotor hub endwall heat transfer, measurements in the 1.5-stage axial turbine facility LISA at ETH Zurich have been performed. An unshrouded, high-pressure representative turbine design with 3D blading and extended endwall contouring of the rotor into the cavity seal has been tested. A state-of-the-art measurement setup with a high-speed infrared camera and thermally managed rotor insert has been used to perform high-resolution heat transfer measurements on the rotor. Three different purge flow rates were investigated with regard to hub endwall heat transfer. Additionally, steady-state CFD simulations were performed to complement the experiments. It was found that the local heat transfer rate changes up to ±20% depending on the purge flow rate. The main part of the purged air is ejected at the endwall trough location and swept towards the rotor suction side caused by the interaction of main flow and the cavity extended endwall design. The presence of low momentum purge flow is locally reducing the heat transfer rate. Changes in adiabatic wall temperature and heat transfer depending on purge rate are observed from the platform start up to the cross passage migration of the secondary flow structures.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Global Power and Propulsion Society (GPPS)
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
heat transfer
en_US
dc.subject
rotor endwall
en_US
dc.subject
purge flow
en_US
dc.subject
endwall contouring
en_US
dc.subject
infrared thermography
en_US
dc.title
Purge Flow Effects on Rotor Hub Endwall Heat Transfer with Extended Endwall Contouring into the Disk Cavity
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
ethz.journal.title
Proceedings of Global Power and Propulsion Society
ethz.size
10 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::620 - Engineering & allied operations
en_US
ethz.event
Global Power and Propulsion Society Technical Conference Zurich19 (GPPS Zurich 2019)
en_US
ethz.event.location
Zurich, Switzerland
en_US
ethz.event.date
January 15-16, 2019
en_US
ethz.publication.place
Zug
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03548 - Abhari, Reza S. / Abhari, Reza S.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03548 - Abhari, Reza S. / Abhari, Reza S.
en_US
ethz.relation.isPreviousVersionOf
10.3929/ethz-b-000395079
ethz.date.deposited
2020-01-28T16:14:47Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-01-29T07:30:02Z
ethz.rosetta.lastUpdated
2020-02-15T23:54:33Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Purge%20Flow%20Effects%20on%20Rotor%20Hub%20Endwall%20Heat%20Transfer%20with%20Extended%20Endwall%20Contouring%20into%20the%20Disk%20Cavity&rft.jtitle=Proceedings%20of%20Global%20Power%20and%20Propulsion%20Society&rft.date=2019-01-15&rft.au=H%C3%A4nni,%20Dominic%20D.&Sch%C3%A4dler,%20Rainer&Abhari,%20Reza%20S.&Kalfas,%20Anestis%20I.&Schmid,%20Gregor&rft.genre=proceeding&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record