Counting Induced Subgraphs: A Topological Approach to #W[1]-hardness
dc.contributor.author
Roth, Marc
dc.contributor.author
Schmitt, Johannes
dc.date.accessioned
2020-08-14T13:26:55Z
dc.date.available
2020-02-01T06:46:57Z
dc.date.available
2020-02-10T14:19:41Z
dc.date.available
2020-08-14T13:26:55Z
dc.date.issued
2020-08
dc.identifier.issn
0178-4617
dc.identifier.issn
1432-0541
dc.identifier.other
10.1007/s00453-020-00676-9
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/396482
dc.identifier.doi
10.3929/ethz-b-000396482
dc.description.abstract
We investigate the problem # IndSub(Φ) of counting all induced subgraphs of size k in a graph G that satisfy a given property Φ.This continues the work of Jerrum and Meeks who proved the problem to be # W [1] -hard for some families of properties which include (dis)connectedness [JCSS 15] and even- or oddness of the number of edges [Combinatorica 17]. Using the recent framework of graph motif parameters due to Curticapean, Dell and Marx [STOC 17], we discover that for monotone properties Φ, the problem # IndSub(Φ) is hard for # W [1] if the reduced Euler characteristic of the associated simplicial (graph) complex of Φ is non-zero. This observation links # IndSub(Φ) to Karp’s famous Evasiveness Conjecture, as every graph complex with non-vanishing reduced Euler characteristic is known to be evasive. Applying tools from the “topological approach to evasiveness” which was introduced in the seminal paper of Khan, Saks and Sturtevant [FOCS 83], we prove that # IndSub(Φ) is # W [1] -hard for every monotone property Φ that does not hold on the Hamilton cycle as well as for some monotone properties that hold on the Hamilton cycle such as being triangle-free or not k-edge-connected for k> 2. Moreover, we show that for those properties # IndSub(Φ) can not be solved in time f(k) · no(k) for any computable function f unless the Exponential Time Hypothesis (ETH) fails. In the final part of the paper, we investigate non-monotone properties and prove that # IndSub(Φ) is # W [1] -hard if Φ is any non-trivial modularity constraint on the number of edges with respect to some prime q or if Φ enforces the presence of a fixed isolated subgraph.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Counting complexity
en_US
dc.subject
Euler characteristic
en_US
dc.subject
Homomorphisms
en_US
dc.subject
Parameterized complexity
en_US
dc.subject
Simplicial complexes
en_US
dc.title
Counting Induced Subgraphs: A Topological Approach to #W[1]-hardness
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-01-22
ethz.journal.title
Algorithmica
ethz.journal.volume
82
en_US
ethz.journal.issue
8
en_US
ethz.journal.abbreviated
Algorithmica
ethz.pages.start
2267
en_US
ethz.pages.end
2291
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Moduli, algebraic cycles, and integration
en_US
ethz.grant
Cohomology of moduli spaces
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.grant.agreementno
786580
ethz.grant.agreementno
162928
ethz.grant.fundername
EC
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
H2020
ethz.grant.program
Projekte MINT
ethz.date.deposited
2020-02-01T06:47:01Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-08-14T13:27:57Z
ethz.rosetta.lastUpdated
2022-03-29T02:55:01Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Counting%20Induced%20Subgraphs:%20A%20Topological%20Approach%20to%20%23W%5B1%5D-hardness&rft.jtitle=Algorithmica&rft.date=2020-08&rft.volume=82&rft.issue=8&rft.spage=2267&rft.epage=2291&rft.issn=0178-4617&1432-0541&rft.au=Roth,%20Marc&Schmitt,%20Johannes&rft.genre=article&rft_id=info:doi/10.1007/s00453-020-00676-9&
Files in this item
Publication type
-
Journal Article [120765]