Strain gradient mediated magnetoelectricity in Fe-Ga/P(VDF-TrFE) multiferroic bilayers integrated on silicon
dc.contributor.author
Nicolenco, Aliona
dc.contributor.author
Gómez, Andrés
dc.contributor.author
Chen, Xiang-Zhong
dc.contributor.author
Menéndez, Enric
dc.contributor.author
Fornell, Jordina
dc.contributor.author
Pané, Salvador
dc.contributor.author
Pellicer, Eva
dc.contributor.author
Sort, Jordi
dc.date.accessioned
2020-02-03T09:47:19Z
dc.date.available
2020-02-03T03:46:17Z
dc.date.available
2020-02-03T09:47:19Z
dc.date.issued
2020-06-01
dc.identifier.issn
2352-9407
dc.identifier.other
10.1016/j.apmt.2020.100579
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/396586
dc.identifier.doi
10.3929/ethz-b-000396586
dc.description.abstract
The primary advantage of magnetoelectric heterostructures exhibiting direct magnetoelectric effect is the possibility to induce and modulate the electrical response of the ferroelectric phase directly with an external magnetic field (i.e., wirelessly, without applying electric field). Nevertheless, the magnetoelectric coupling in such heterostructures is commonly limited by substrate clamping which hinders effective strain propagation. In this work, 1 μm thick ferromagnetic Fe-Ga layers were electrodeposited onto rigid Si/Cu substrates and subsequently coated with ferroelectric P(VDF-TrFE). Under magnetic field, the (110) textured Fe-Ga alloy is compressed along the z-direction by 0.033%, as demonstrated by X-ray diffraction. The experimental results suggest that while the bottom of the Fe-Ga layer is clamped, its air side exhibits a pronounced tetragonal deformation thanks to the residual nanoporosity existing between the columnar grains, that is, a strain gradient develops across the thickness of the Fe-Ga film. This strain gradient in Fe-Ga induces a change in the piezoresponse of the adjacent ferroelectric P(VDF-TrFE) layer. These results pave the way to the design of high-performance microelectromechanical systems (MEMS) with magnetoelectric response integrated on rigid substrates.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Magnetoelectricity
en_US
dc.subject
Fe-Ga
en_US
dc.subject
P(VDF-TrFE)
en_US
dc.subject
Ferroelectric
en_US
dc.subject
Magnetostriction
en_US
dc.subject
Strain gradient
en_US
dc.title
Strain gradient mediated magnetoelectricity in Fe-Ga/P(VDF-TrFE) multiferroic bilayers integrated on silicon
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-01-30
ethz.journal.title
Applied Materials Today
ethz.journal.volume
19
en_US
ethz.pages.start
100579
en_US
ethz.size
8 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03627 - Nelson, Bradley J. / Nelson, Bradley J.::08705 - Gruppe Pané Vidal
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03627 - Nelson, Bradley J. / Nelson, Bradley J.::08705 - Gruppe Pané Vidal
ethz.date.deposited
2020-02-03T03:46:27Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-02-03T09:47:31Z
ethz.rosetta.lastUpdated
2024-02-02T10:17:59Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Strain%20gradient%20mediated%20magnetoelectricity%20in%20Fe-Ga/P(VDF-TrFE)%20multiferroic%20bilayers%20integrated%20on%20silicon&rft.jtitle=Applied%20Materials%20Today&rft.date=2020-06-01&rft.volume=19&rft.spage=100579&rft.issn=2352-9407&rft.au=Nicolenco,%20Aliona&G%C3%B3mez,%20Andr%C3%A9s&Chen,%20Xiang-Zhong&Men%C3%A9ndez,%20Enric&Fornell,%20Jordina&rft.genre=article&rft_id=info:doi/10.1016/j.apmt.2020.100579&
Dateien zu diesem Eintrag
Publikationstyp
-
Journal Article [130603]