Adaptive wavelet methods for elliptic partial differential equations with random operators
Metadata only
Autor(in)
Datum
2011-05Typ
- Report
ETH Bibliographie
yes
Altmetrics
Abstract
We apply adaptive wavelet methods to boundary value problems with random coefficients, discretized by wavelets or frames in the spatial domain and tensorized polynomials in the parameter domain. Greedy algorithms control the approximate application of the fully discretized random operator, and the construction of sparse approximations to this operator. We suggest a power iteration for estimating errors induced by sparse approximations of linear operators. Mehr anzeigen
Publikationsstatus
unpublishedExterne Links
Zeitschrift / Serie
Research reportsBand
(2011/37)Verlag
Seminar für Angewandte Mathematik, ETHThema
Partial differential equations with random coefficients; Uncertainty quantification; Stochastic finite element methods; Operator equations, adaptive methodsOrganisationseinheit
03435 - Schwab, Christoph / Schwab, Christoph
ETH Bibliographie
yes
Altmetrics