Prediction of ESG compliance using a heterogeneous information network
dc.contributor.author
Hisano, Ryohei
dc.contributor.author
Sornette, Didier
dc.contributor.author
Mizuno, Takayuki
dc.date.accessioned
2020-03-30T07:49:00Z
dc.date.available
2020-03-30T04:06:24Z
dc.date.available
2020-03-30T07:49:00Z
dc.date.issued
2020
dc.identifier.other
10.1186/s40537-020-00295-9
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/407140
dc.identifier.doi
10.3929/ethz-b-000407140
dc.description.abstract
Negative screening is one method to avoid interactions with inappropriate entities. For example, financial institutions keep investment exclusion lists of inappropriate firms that have environmental, social, and governance (ESG) problems. They create their investment exclusion lists by gathering information from various news sources to keep their portfolios profitable as well as green. International organizations also maintain smart sanctions lists that are used to prohibit trade with entities that are involved in illegal activities. In the present paper, we focus on the prediction of investment exclusion lists in the finance domain. We construct a vast heterogeneous information network that covers the necessary information surrounding each firm, which is assembled using seven professionally curated datasets and two open datasets, which results in approximately 50 million nodes and 400 million edges in total. Exploiting these vast datasets and motivated by how professional investigators and journalists undertake their daily investigations, we propose a model that can learn to predict firms that are more likely to be added to an investment exclusion list in the near future. Our approach is tested using the negative news investment exclusion list data of more than 35,000 firms worldwide from January 2012 to May 2018. Comparing with the state-of-the-art methods with and without using the network, we show that the predictive accuracy is substantially improved when using the vast information stored in the heterogeneous information network. This work suggests new ways to consolidate the diffuse information contained in big data to monitor dominant firms on a global scale for better risk management and more socially responsible investment.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Heterogeneous information network
en_US
dc.subject
Computational investigation
en_US
dc.subject
Investment exclusion list
en_US
dc.subject
Finance
en_US
dc.subject
News prediction
en_US
dc.subject
Label propagation
en_US
dc.title
Prediction of ESG compliance using a heterogeneous information network
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-03-16
ethz.journal.title
Journal of Big Data
ethz.journal.volume
7
en_US
ethz.journal.issue
1
en_US
ethz.pages.start
22
en_US
ethz.size
19 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::03738 - Sornette, Didier (emeritus) / Sornette, Didier (emeritus)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::03738 - Sornette, Didier (emeritus) / Sornette, Didier (emeritus)
ethz.date.deposited
2020-03-30T04:06:28Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-03-30T07:49:11Z
ethz.rosetta.lastUpdated
2023-02-06T18:27:16Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Prediction%20of%20ESG%20compliance%20using%20a%20heterogeneous%20information%20network&rft.jtitle=Journal%20of%20Big%20Data&rft.date=2020&rft.volume=7&rft.issue=1&rft.spage=22&rft.au=Hisano,%20Ryohei&Sornette,%20Didier&Mizuno,%20Takayuki&rft.genre=article&rft_id=info:doi/10.1186/s40537-020-00295-9&
Files in this item
Publication type
-
Journal Article [120834]