Show simple item record

dc.contributor.author
Yao, Yao
dc.contributor.author
Wu, Daiqiang
dc.contributor.author
Hong, Ye
dc.contributor.author
Chen, Dongsheng
dc.contributor.author
Liang, Zhaotang
dc.contributor.author
Guan, Qingfeng
dc.contributor.author
Liang, Xun
dc.contributor.author
Dai, Liangyang
dc.date.accessioned
2020-05-04T12:12:30Z
dc.date.available
2020-05-01T03:14:47Z
dc.date.available
2020-05-04T12:12:30Z
dc.date.issued
2020
dc.identifier.issn
1939-1404
dc.identifier.issn
2151-1535
dc.identifier.other
10.1109/JSTARS.2020.2966591
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/412659
dc.identifier.doi
10.3929/ethz-b-000412659
dc.description.abstract
The development of geospatial big data makes it possible to study traffic-congestion issues. In particular, floating car data (FCD) is very suitable for it because FCD can help predict traffic-congestion bottlenecks and provide corresponding solutions to address traffic problems. Previous studies have discussed the impacts of rainfall on road speeds, but few studies have focused on the impacts of rainfall on the spatial distribution and changes in traffic-congestion bottlenecks throughout a mega-city. This article proposes an index calculation and clustering (ICC) model by integrating PageRank and clustering algorithms from multisource data, including rainfall data, FCD, and OpenStreetMap data. As the study area, we selected Shenzhen, which is the largest developed city in South China. The results demonstrate three peak periods of citizen travel, namely, 8:00-10:00, 14:00-16:00, and 18:00-20:00. Road speeds after rainfall decrease by 6.20% on weekdays and by 2.37% on weekends, and traffic-congestion areas increase by 23.53% and 20.65% on weekdays and on weekends, respectively. In addition, rainfall causes more significant effects on traffic conditions on weekdays compared with on weekends in Shenzhen. Compared with a traditional kernel density analysis, the proposed ICC model can offer a more thorough understanding of urban traffic-congestion areas, which can help policy makers optimize alleviation strategies.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Clustering algorithms
en_US
dc.subject
Floating car
en_US
dc.subject
Geospatial big data
en_US
dc.subject
Rainfall
en_US
dc.subject
Traffic congestion
en_US
dc.title
Analyzing the Effects of Rainfall on Urban Traffic-Congestion Bottlenecks
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-01-21
ethz.journal.title
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ethz.journal.volume
13
en_US
ethz.journal.abbreviated
IEEE j. sel. top. appl. earth obs. remote sens.
ethz.pages.start
504
en_US
ethz.pages.end
512
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02648 - Inst. f. Kartografie und Geoinformation / Institute of Cartography&Geoinformation::03901 - Raubal, Martin / Raubal, Martin
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02648 - Inst. f. Kartografie und Geoinformation / Institute of Cartography&Geoinformation::03901 - Raubal, Martin / Raubal, Martin
ethz.date.deposited
2020-05-01T03:14:51Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-05-04T12:12:41Z
ethz.rosetta.lastUpdated
2022-03-29T02:02:24Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Analyzing%20the%20Effects%20of%20Rainfall%20on%20Urban%20Traffic-Congestion%20Bottlenecks&rft.jtitle=IEEE%20Journal%20of%20Selected%20Topics%20in%20Applied%20Earth%20Observations%20and%20Remote%20Sensing&rft.date=2020&rft.volume=13&rft.spage=504&rft.epage=512&rft.issn=1939-1404&2151-1535&rft.au=Yao,%20Yao&Wu,%20Daiqiang&Hong,%20Ye&Chen,%20Dongsheng&Liang,%20Zhaotang&rft.genre=article&rft_id=info:doi/10.1109/JSTARS.2020.2966591&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record