Show simple item record

dc.contributor.author
Zehmakan, Ahad N.
dc.date.accessioned
2020-12-07T06:58:13Z
dc.date.available
2020-05-09T03:52:55Z
dc.date.available
2020-05-11T08:25:40Z
dc.date.available
2020-12-07T06:58:13Z
dc.date.issued
2020-04-30
dc.identifier.issn
0166-218X
dc.identifier.issn
1872-6771
dc.identifier.other
10.1016/j.dam.2019.10.001
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/413976
dc.description.abstract
Assume for a graph G=V,E and an initial configuration, where each node is blue or red, in each discrete-time round all nodes simultaneously update their color to the most frequent color in their neighborhood and a node keeps its color in case of a tie. We study the behavior of this basic process, which is called the majority model, on the Erdős–Rényi random graph Gn,p and regular expanders. First we consider the behavior of the majority model on Gn,p with an initial random configuration, where each node is blue independently with probability pb and red otherwise. It is shown that in this setting the process goes through a phase transition at the connectivity threshold, namely logn∕n. Furthermore, we say a graph G is λ-expander if the second-largest absolute eigenvalue of its adjacency matrix is λ. We prove that for a Δ-regular λ-expander graph if λ∕Δ is sufficiently small, then the majority model by starting from 1∕2−δn blue nodes (for an arbitrarily small constant δ>0) results in fully red configuration in sub-logarithmically many rounds. Roughly speaking, this means the majority model is an “efficient” and “fast” density classifier on regular expanders. As a by-product of our results, we show that regular Ramanujan graphs are asymptotically optimally immune, that is for an n-node Δ-regular Ramanujan graph if the initial number of blue nodes is s≤βn, the number of blue nodes in the next round is at most cs∕Δ for some constants c,β>0. © 2019 Elsevier B.V.
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.subject
Expanders
en_US
dc.subject
Random graphs
en_US
dc.subject
Majority model
en_US
dc.subject
Bootstrap percolation
en_US
dc.title
Opinion forming in Erdős–Rényi random graph and expanders
en_US
dc.type
Journal Article
dc.date.published
2019-10-11
ethz.journal.title
Discrete Applied Mathematics
ethz.journal.volume
277
en_US
ethz.journal.abbreviated
Discrete Appl. Math.
ethz.pages.start
280
en_US
ethz.pages.end
290
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::09687 - Kyng, Rasmus / Kyng, Rasmus
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::03672 - Steger, Angelika / Steger, Angelika::03457 - Welzl, Emo (emeritus) / Welzl, Emo (emeritus)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::09687 - Kyng, Rasmus / Kyng, Rasmus
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::03672 - Steger, Angelika / Steger, Angelika::03457 - Welzl, Emo (emeritus) / Welzl, Emo (emeritus)
ethz.date.deposited
2020-05-09T03:53:05Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-05-11T08:25:52Z
ethz.rosetta.lastUpdated
2024-02-02T12:38:32Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Opinion%20forming%20in%20Erd%C5%91s%E2%80%93R%C3%A9nyi%20random%20graph%20and%20expanders&rft.jtitle=Discrete%20Applied%20Mathematics&rft.date=2020-04-30&rft.volume=277&rft.spage=280&rft.epage=290&rft.issn=0166-218X&1872-6771&rft.au=Zehmakan,%20Ahad%20N.&rft.genre=article&rft_id=info:doi/10.1016/j.dam.2019.10.001&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record