Show simple item record

dc.contributor.author
Singer, Berit
dc.contributor.supervisor
Biran, Paul
dc.contributor.supervisor
Merry, Will
dc.contributor.supervisor
Schlenk, Felix
dc.date.accessioned
2020-05-14T10:53:28Z
dc.date.available
2020-05-13T08:18:59Z
dc.date.available
2020-05-13T14:11:07Z
dc.date.available
2020-05-14T10:53:28Z
dc.date.issued
2019
dc.identifier.uri
http://hdl.handle.net/20.500.11850/414580
dc.identifier.doi
10.3929/ethz-b-000414580
dc.description.abstract
In this thesis we study Lagrangian cobordisms with the tools provided by Lagrangian quantum homology. In particular, we develop the theory for the setting of Lagrangian cobordisms or Lagrangians with cylindrical ends in a Lefschetz fibration, and put the different versions of the quantum homology groups into relation by a long exact sequence. We prove various practical relations of maps in this long exact sequence and we extract invariants that generalize the notion of discriminants to Lagrangian cobordisms in Lefschetz fibrations. We prove results on the relation of the discriminants of the ends of a cobordism and the cobordism itself. We also give examples arising from Lagrangian spheres and relate the discriminant to open Gromov Witten invariants. We show that for some configurations of Lagrangian spheres the discriminant always vanishes. We study a set of examples that arise from Lefschetz pencils of complex quadric $n+1$ hypersurfaces of $\mathbb{CP}^{n+1}$ structures and their real part are the Lagrangians of interest. Using the results established in this thesis, we compute the discriminants of all these Lagrangians by reducing the calculation to the previously established case of a real Lagrangian sphere in the quadric.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Symplectic topology;
en_US
dc.subject
Algebraic geometry
en_US
dc.title
Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2020-05-14
ethz.size
117 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::510 - Mathematics
en_US
ethz.grant
Lagrangian Cobordism, Symplectic Dynamics and Infinite Dimensional Group Actions
en_US
ethz.identifier.diss
26379
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03839 - Biran, Paul I. / Biran, Paul I.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03839 - Biran, Paul I. / Biran, Paul I.
en_US
ethz.grant.agreementno
156000
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projektförderung in Mathematik, Natur- und Ingenieurwissenschaften (Abteilung II)
ethz.date.deposited
2020-05-13T08:19:07Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-05-14T10:53:37Z
ethz.rosetta.lastUpdated
2022-03-29T02:06:03Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Lagrangian%20cobordisms,%20Lefschetz%20Fibrations%20and%20Quantum%20Invariants&rft.date=2019&rft.au=Singer,%20Berit&rft.genre=unknown&rft.btitle=Lagrangian%20cobordisms,%20Lefschetz%20Fibrations%20and%20Quantum%20Invariants
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record