A Digital Multiplier-less Neuromorphic Model for Learning a Context-Dependent Task
dc.contributor.author
Asgari, Hajar
dc.contributor.author
Maybodi, Babak Mazloom-Nezhad
dc.contributor.author
Kreiser, Raphaela
dc.contributor.author
Sandamirskaya, Yulia
dc.date.accessioned
2020-09-07T08:49:35Z
dc.date.available
2020-05-30T03:17:39Z
dc.date.available
2020-06-05T11:48:38Z
dc.date.available
2020-09-07T08:49:35Z
dc.date.issued
2020
dc.identifier.isbn
978-1-7281-4922-6
en_US
dc.identifier.isbn
978-1-7281-4923-3
en_US
dc.identifier.other
10.1109/AICAS48895.2020.9073881
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/417497
dc.description.abstract
Highly efficient performance-resources trade-off of the biological brain is a motivation for research on neuromorphic computing. Neuromorphic engineers develop event-based spiking neural networks (SNNs) in hardware. Learning in SNNs is a challenging topic of current research. Reinforcement learning (RL) is a particularly promising learning paradigm, important for developing autonomous agents. In this paper, we propose a digital multiplier-less hardware implementation of an SNN with RL capability. The network is able to learn stimulus-response associations in a context-dependent learning task. Validated in a robotic experiment, the proposed model replicates the behavior in animal experiments and the respective computational model. Index Terms-Neuromorphic engineering, spiking neural networks, reinforcement learning, context-dependent task.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Neuromorphic engineering
en_US
dc.subject
Spiking neural networks
en_US
dc.subject
Reinforcement learning
en_US
dc.subject
Context-dependent task
en_US
dc.title
A Digital Multiplier-less Neuromorphic Model for Learning a Context-Dependent Task
en_US
dc.type
Conference Paper
dc.date.published
2020-04-23
ethz.book.title
2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)
en_US
ethz.pages.start
123
en_US
ethz.pages.end
127
en_US
ethz.event
2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS 2020) (virtual)
en_US
ethz.event.location
Genova, Italy
en_US
ethz.event.date
August 31 - September 2, 2020
en_US
ethz.notes
Conference postponed due to Corona virus (COVID-19). Due to the Corona virus (COVID-19) the conference was conducted virtually.
en_US
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09699 - Indiveri, Giacomo / Indiveri, Giacomo
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09699 - Indiveri, Giacomo / Indiveri, Giacomo
ethz.date.deposited
2020-05-30T03:18:00Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-09-07T08:49:46Z
ethz.rosetta.lastUpdated
2021-02-15T17:01:42Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20Digital%20Multiplier-less%20Neuromorphic%20Model%20for%20Learning%20a%20Context-Dependent%20Task&rft.date=2020&rft.spage=123&rft.epage=127&rft.au=Asgari,%20Hajar&Maybodi,%20Babak%20Mazloom-Nezhad&Kreiser,%20Raphaela&Sandamirskaya,%20Yulia&rft.isbn=978-1-7281-4922-6&978-1-7281-4923-3&rft.genre=proceeding&rft_id=info:doi/10.1109/AICAS48895.2020.9073881&rft.btitle=2020%202nd%20IEEE%20International%20Conference%20on%20Artificial%20Intelligence%20Circuits%20and%20Systems%20(AICAS)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35257]