Show simple item record

dc.contributor.author
Jentzen, Arnulf
dc.contributor.author
Kurniawan, Ryan
dc.date.accessioned
2021-04-19T07:38:32Z
dc.date.available
2020-06-07T02:30:54Z
dc.date.available
2020-06-08T08:20:16Z
dc.date.available
2021-04-19T07:38:32Z
dc.date.issued
2021-04
dc.identifier.issn
1615-3375
dc.identifier.issn
1615-3383
dc.identifier.other
10.1007/s10208-020-09448-x
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/418660
dc.description.abstract
Strong convergence rates for time-discrete numerical approximations of semilinear stochastic evolution equations (SEEs) with smooth and regular nonlinearities are well understood in the literature. Weak convergence rates for time-discrete numerical approximations of such SEEs have, loosely speaking, been investigated since 2003 and are far away from being well understood: roughly speaking, no essentially sharp weak convergence rates are known for time-discrete numerical approximations of parabolic SEEs with nonlinear diffusion coefficient functions. In the recent article (Conus et al. in Ann Appl Probab 29(2):653–716, 2019) this weak convergence problem has been solved in the case of spatial spectral Galerkin approximations for semilinear SEEs with nonlinear diffusion coefficient functions. In this article we overcome this weak convergence problem in the case of a class of time-discrete Euler-type approximation methods (including exponential and linear-implicit Euler approximations as special cases) and, in particular, we establish essentially sharp weak convergence rates for linear-implicit Euler approximations of semilinear SEEs with nonlinear diffusion coefficient functions. Key ingredients of our approach are applications of a mild Itô-type formula and the use of suitable semilinear integrated counterparts of the time-discrete numerical approximation processes.
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.subject
SPDE
en_US
dc.subject
Stochastic partial differential equation
en_US
dc.subject
Weak convergence
en_US
dc.subject
Weak convergence rate
en_US
dc.subject
Euler-type approximations
en_US
dc.subject
Mild Itô formula
en_US
dc.title
Weak Convergence Rates for Euler-Type Approximations of Semilinear Stochastic Evolution Equations with Nonlinear Diffusion Coefficients
en_US
dc.type
Journal Article
dc.date.published
2020-05-18
ethz.journal.title
Foundations of Computational Mathematics
ethz.journal.volume
21
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
Found. comput. math.
ethz.pages.start
445
en_US
ethz.pages.end
536
en_US
ethz.grant
Numerical approximations of nonlinear stochastic ordinary and partial differential equations
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
ethz.grant.agreementno
156603
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projektförderung in Mathematik, Natur- und Ingenieurwissenschaften (Abteilung II)
ethz.date.deposited
2020-06-07T02:30:58Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-04-19T07:38:48Z
ethz.rosetta.lastUpdated
2021-04-19T07:38:48Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Weak%20Convergence%20Rates%20for%20Euler-Type%20Approximations%20of%20Semilinear%20Stochastic%20Evolution%20Equations%20with%20Nonlinear%20Diffusion%20Coefficients&rft.jtitle=Foundations%20of%20Computational%20Mathematics&rft.date=2021-04&rft.volume=21&rft.issue=2&rft.spage=445&rft.epage=536&rft.issn=1615-3375&1615-3383&rft.au=Jentzen,%20Arnulf&Kurniawan,%20Ryan&rft.genre=article&rft_id=info:doi/10.1007/s10208-020-09448-x&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record