Show simple item record

dc.contributor.author
Jegminat, Jannes
dc.contributor.author
Jastrzębowska, Maya A.
dc.contributor.author
Pachai, Matthew V.
dc.contributor.author
Herzog, Michael H.
dc.contributor.author
Pfister, Jean-Pascal
dc.date.accessioned
2020-06-11T05:32:58Z
dc.date.available
2020-06-11T02:36:02Z
dc.date.available
2020-06-11T05:32:58Z
dc.date.issued
2020
dc.identifier.issn
1553-734X
dc.identifier.issn
1553-7358
dc.identifier.other
10.1371/journal.pcbi.1007886
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/419626
dc.identifier.doi
10.3929/ethz-b-000419626
dc.description.abstract
Accumulating evidence indicates that the human brain copes with sensory uncertainty in accordance with Bayes’ rule. However, it is unknown how humans make predictions when the generative model of the task at hand is described by uncertain parameters. Here, we tested whether and how humans take parameter uncertainty into account in a regression task. Participants extrapolated a parabola from a limited number of noisy points, shown on a computer screen. The quadratic parameter was drawn from a bimodal prior distribution. We tested whether human observers take full advantage of the given information, including the likelihood of the quadratic parameter value given the observed points and the quadratic parameter’s prior distribution. We compared human performance with Bayesian regression, which is the (Bayes) optimal solution to this problem, and three sub-optimal models, which are simpler to compute. Our results show that, under our specific experimental conditions, humans behave in a way that is consistent with Bayesian regression. Moreover, our results support the hypothesis that humans generate responses in a manner consistent with probability matching rather than Bayesian decision theory.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
PLOS
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Bayesian regression explains how human participants handle parameter uncertainty
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-05-18
ethz.journal.title
PLoS Computational Biology
ethz.journal.volume
16
en_US
ethz.journal.issue
5
en_US
ethz.journal.abbreviated
PLOS comput. biol.
ethz.pages.start
e1007886
en_US
ethz.size
23 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
San Francisco, CA
ethz.publication.status
published
en_US
ethz.date.deposited
2020-06-11T02:36:08Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-06-11T05:33:09Z
ethz.rosetta.lastUpdated
2024-02-02T11:06:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Bayesian%20regression%20explains%20how%20human%20participants%20handle%20parameter%20uncertainty&rft.jtitle=PLoS%20Computational%20Biology&rft.date=2020&rft.volume=16&rft.issue=5&rft.spage=e1007886&rft.issn=1553-734X&1553-7358&rft.au=Jegminat,%20Jannes&Jastrz%C4%99bowska,%20Maya%20A.&Pachai,%20Matthew%20V.&Herzog,%20Michael%20H.&Pfister,%20Jean-Pascal&rft.genre=article&rft_id=info:doi/10.1371/journal.pcbi.1007886&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record