Higher-gradient and micro-inertia contributions on the mechanical response of composite beam structures
dc.contributor.author
Ayad, M.
dc.contributor.author
Karathanasopoulos, Nikolaos
dc.contributor.author
Ganghoffer, Jean-François
dc.contributor.author
Lakiss, Hassan
dc.date.accessioned
2020-06-15T12:27:24Z
dc.date.available
2020-06-13T05:35:08Z
dc.date.available
2020-06-15T12:27:24Z
dc.date.issued
2020-09
dc.identifier.issn
0020-7225
dc.identifier.other
10.1016/j.ijengsci.2020.103318
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/420222
dc.identifier.doi
10.3929/ethz-b-000420222
dc.description.abstract
In the current work, we study the role of higher-order and micro-inertia contributions on the mechanical behavior of composite structures. To that scope, we compute the complete set of the effective static and dynamic properties of composite beam structures using a higher-order dynamic homogenization method which incorporates micro-inertia effects. We consider different inner composite element designs, with material constituents that are of relevance for current engineering practice. Thereupon, we compute the effective static longitudinal higher-gradient response, quantifying the relative difference with respect to the commonly employed, Cauchy-mechanics formulation. We observe that within the static analysis range, higher-order effects require high internal length values and highly non-linear strain profile distributions for non-negligible higher-order effects to appear. We subsequently analyze the longitudinal, higher-gradient eigenfrequency properties of composite structural members, accounting for the role of micro-inertia contributions. Thereupon, we derive analytical expressions that relate the composite material's effective constitutive parameters with its macroscale vibration characteristics. We provide for the first-time evidence that micro-inertia contributions can counteract the effect of second-gradient properties on the eigenfrequencies of the structure, with their relative significance to depend on the mode of interest. What is more, we show that the internal length plays a crucial role in the significance of micro-inertia contributions, with their effect to be substantial for low, rather than for high internal length values, thus for a wide range of materials used in engineering practice.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Statics
en_US
dc.subject
Vibration
en_US
dc.subject
Higher-gradient
en_US
dc.subject
Micro-inertia
en_US
dc.subject
Multiscale
en_US
dc.subject
Eigenfrequency
en_US
dc.title
Higher-gradient and micro-inertia contributions on the mechanical response of composite beam structures
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2020-06-07
ethz.journal.title
International Journal of Engineering Science
ethz.journal.volume
154
en_US
ethz.journal.abbreviated
Int. J. Eng. Sci.
ethz.pages.start
103318
en_US
ethz.size
16 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2020-06-13T05:35:14Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-06-15T12:27:35Z
ethz.rosetta.lastUpdated
2021-02-15T14:41:02Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Higher-gradient%20and%20micro-inertia%20contributions%20on%20the%20mechanical%20response%20of%20composite%20beam%20structures&rft.jtitle=International%20Journal%20of%20Engineering%20Science&rft.date=2020-09&rft.volume=154&rft.spage=103318&rft.issn=0020-7225&rft.au=Ayad,%20M.&Karathanasopoulos,%20Nikolaos&Ganghoffer,%20Jean-Fran%C3%A7ois&Lakiss,%20Hassan&rft.genre=article&rft_id=info:doi/10.1016/j.ijengsci.2020.103318&
Files in this item
Publication type
-
Journal Article [124126]