Show simple item record

dc.contributor.author
Harris, Stephen J.
dc.contributor.author
Liisberg, Jesper
dc.contributor.author
Xia, Longlong
dc.contributor.author
Wei, Jing
dc.contributor.author
Zeyer, Kerstin
dc.contributor.author
Yu, Longfei
dc.contributor.author
Barthel, Matti
dc.contributor.author
Wolf, Benjamin
dc.contributor.author
Kelly, Bryce F.J.
dc.contributor.author
Cendón, Dioni I.
dc.contributor.author
Blunier, Thomas
dc.contributor.author
Six, Johan
dc.contributor.author
Mohn, Joachim
dc.date.accessioned
2020-06-15T08:18:07Z
dc.date.available
2020-06-15T03:06:08Z
dc.date.available
2020-06-15T08:17:23Z
dc.date.available
2020-06-15T08:18:07Z
dc.date.issued
2020
dc.identifier.issn
1867-1381
dc.identifier.issn
1867-8548
dc.identifier.other
10.5194/amt-13-2797-2020
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/420259
dc.identifier.doi
10.3929/ethz-b-000420259
dc.description.abstract
For the past two decades, the measurement of nitrous oxide (N2O) isotopocules – isotopically substituted molecules 14N15N16O, 15N14N16O and 14N14N18O of the main isotopic species 14N14N16O – has been a promising technique for understanding N2O production and consumption pathways. The coupling of non-cryogenic and tuneable light sources with different detection schemes, such as direct absorption quantum cascade laser absorption spectroscopy (QCLAS), cavity ring-down spectroscopy (CRDS) and off-axis integrated cavity output spectroscopy (OA-ICOS), has enabled the production of commercially available and field-deployable N2O isotopic analyzers. In contrast to traditional isotope-ratio mass spectrometry (IRMS), these instruments are inherently selective for position-specific 15N substitution and provide real-time data, with minimal or no sample pretreatment, which is highly attractive for process studies. Here, we compared the performance of N2O isotope laser spectrometers with the three most common detection schemes: OA-ICOS (N2OIA-30e-EP, ABB – Los Gatos Research Inc.), CRDS (G5131-i, Picarro Inc.) and QCLAS (dual QCLAS and preconcentration, trace gas extractor (TREX)-mini QCLAS, Aerodyne Research Inc.). For each instrument, the precision, drift and repeatability of N2O mole fraction [N2O] and isotope data were tested. The analyzers were then characterized for their dependence on [N2O], gas matrix composition (O2, Ar) and spectral interferences caused by H2O, CO2, CH4 and CO to develop analyzer-specific correction functions. Subsequently, a simulated two-end-member mixing experiment was used to compare the accuracy and repeatability of corrected and calibrated isotope measurements that could be acquired using the different laser spectrometers. Our results show that N2O isotope laser spectrometer performance is governed by an interplay between instrumental precision, drift, matrix effects and spectral interferences. To retrieve compatible and accurate results, it is necessary to include appropriate reference materials following the identical treatment (IT) principle during every measurement. Remaining differences between sample and reference gas compositions have to be corrected by applying analyzer-specific correction algorithms. These matrix and trace gas correction equations vary considerably according to N2O mole fraction, complicating the procedure further. Thus, researchers should strive to minimize differences in composition between sample and reference gases. In closing, we provide a calibration workflow to guide researchers in the operation of N2O isotope laser spectrometers in order to acquire accurate N2O isotope analyses. We anticipate that this workflow will assist in applications where matrix and trace gas compositions vary considerably (e.g., laboratory incubations, N2O liberated from wastewater or groundwater), as well as extend to future analyzer models and instruments focusing on isotopic species of other molecules.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Copernicus
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
N2O isotopocule measurements using laser spectroscopy: analyzer characterization and intercomparison
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-05-28
ethz.journal.title
Atmospheric Measurement Techniques
ethz.journal.volume
13
en_US
ethz.journal.issue
5
en_US
ethz.journal.abbreviated
Atmos. meas. tech.
ethz.pages.start
2797
en_US
ethz.pages.end
2831
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::03982 - Six, Johan / Six, Johan
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::03982 - Six, Johan / Six, Johan
ethz.date.deposited
2020-06-15T03:06:15Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-06-15T08:17:36Z
ethz.rosetta.lastUpdated
2024-02-02T11:08:17Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=N2O%20isotopocule%20measurements%20using%20laser%20spectroscopy:%20analyzer%20characterization%20and%20intercomparison&rft.jtitle=Atmospheric%20Measurement%20Techniques&rft.date=2020&rft.volume=13&rft.issue=5&rft.spage=2797&rft.epage=2831&rft.issn=1867-1381&1867-8548&rft.au=Harris,%20Stephen%20J.&Liisberg,%20Jesper&Xia,%20Longlong&Wei,%20Jing&Zeyer,%20Kerstin&rft.genre=article&rft_id=info:doi/10.5194/amt-13-2797-2020&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record