Show simple item record

dc.contributor.author
Fahrendorf, Frederik
dc.contributor.author
Morganti, Simone
dc.contributor.author
Reali, Alessandro
dc.contributor.author
Hughes, Thomas J.R.
dc.contributor.author
De Lorenzis, Laura
dc.date.accessioned
2020-07-10T08:25:12Z
dc.date.available
2020-07-09T05:26:30Z
dc.date.available
2020-07-10T08:25:12Z
dc.date.issued
2020-09
dc.identifier.issn
0045-7825
dc.identifier.issn
1879-2138
dc.identifier.other
10.1016/j.cma.2020.113112
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/425392
dc.description.abstract
We propose a mixed stress-displacement isogeometric collocation method for nearly incompressible elastic materials and for materials exhibiting von Mises plasticity. The discretization is based on isogeometric analysis (IGA) with non-uniform rational B-Splines (NURBS) as basis functions. As compared to conventional IGA Galerkin formulations, isogeometric collocation methods offer a high potential of computational cost reduction for higher-order discretizations as they eliminate the need for quadrature. In the proposed mixed formulation, both stress and displacement fields are approximated as primary variables with the aim of treating volumetric locking and instability issues, which occur in displacement-based isogeometric collocation for nearly incompressible elasticity and von Mises plasticity. The performance of the proposed approach is demonstrated by several numerical examples. © Elsevier 2020
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.subject
Isogeometric analysis
en_US
dc.subject
Isogeometric collocation
en_US
dc.subject
Volumetric locking
en_US
dc.subject
Elastoplasticity
en_US
dc.subject
Mixed stress-displacement formulation
en_US
dc.title
Mixed stress-displacement isogeometric collocation for nearly incompressible elasticity and elastoplasticity
en_US
dc.type
Journal Article
dc.date.published
2020-07-02
ethz.journal.title
Computer Methods in Applied Mechanics and Engineering
ethz.journal.volume
369
en_US
ethz.journal.abbreviated
Comput. Methods Appl. Mech. Eng.
ethz.pages.start
113112
en_US
ethz.size
48 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::09697 - De Lorenzis, Laura / De Lorenzis, Laura
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::09697 - De Lorenzis, Laura / De Lorenzis, Laura
ethz.date.deposited
2020-07-09T05:26:37Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-07-10T08:25:23Z
ethz.rosetta.lastUpdated
2021-02-15T15:24:13Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Mixed%20stress-displacement%20isogeometric%20collocation%20for%20nearly%20incompressible%20elasticity%20and%20elastoplasticity&rft.jtitle=Computer%20Methods%20in%20Applied%20Mechanics%20and%20Engineering&rft.date=2020-09&rft.volume=369&rft.spage=113112&rft.issn=0045-7825&1879-2138&rft.au=Fahrendorf,%20Frederik&Morganti,%20Simone&Reali,%20Alessandro&Hughes,%20Thomas%20J.R.&De%20Lorenzis,%20Laura&rft.genre=article&rft_id=info:doi/10.1016/j.cma.2020.113112&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record