On the Fairness of Disentangled Representations
dc.contributor.author
Locatello, Francesco
dc.contributor.author
Abbati, Gabriele
dc.contributor.author
Rainforth, Thomas
dc.contributor.author
Bauer, Stefan
dc.contributor.author
Schölkopf, Bernhard
dc.contributor.author
Bachem, Olivier
dc.contributor.editor
Wallach, Hanna
dc.contributor.editor
Larochelle, Hugo
dc.contributor.editor
Beygelzimer, Alina
dc.contributor.editor
d’Alché-Buc, Florence
dc.contributor.editor
Fox, Emily
dc.contributor.editor
Garnett, Roman
dc.date.accessioned
2020-10-20T09:08:47Z
dc.date.available
2020-07-10T02:46:19Z
dc.date.available
2020-08-05T07:33:35Z
dc.date.available
2020-10-20T09:08:47Z
dc.date.issued
2020
dc.identifier.isbn
978-1-7138-0793-3
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/425663
dc.description.abstract
Recently there has been a significant interest in learning disentangled representations, as they promise increased interpretability, generalization to unseen scenarios and faster learning on downstream tasks. In this paper, we investigate the usefulness of different notions of disentanglement for improving the fairness of downstream prediction tasks based on representations. We consider the setting where the goal is to predict a target variable based on the learned representation of high-dimensional observations (such as images) that depend on both the target variable and an unobserved sensitive variable. We show that in this setting both the optimal and empirical predictions can be unfair, even if the target variable and the sensitive variable are independent. Analyzing the representations of more than 12 600 trained state-of-the-art disentangled models, we observe that several disentanglement scores are consistently correlated with increased fairness, suggesting that disentanglement may be a useful property to encourage fairness when sensitive variables are not observed.
en_US
dc.language.iso
en
en_US
dc.publisher
Curran
dc.title
On the Fairness of Disentangled Representations
en_US
dc.type
Conference Paper
ethz.book.title
Advances in Neural Information Processing Systems 32
en_US
ethz.journal.volume
19
en_US
ethz.pages.start
14544
en_US
ethz.pages.end
14557
en_US
ethz.event
33rd Annual Conference on Neural Information Processing Systems (NeurIPS 2019)
en_US
ethz.event.location
Vancouver, Canada
ethz.event.date
December 8-14, 2019
en_US
ethz.notes
Poster presentation.
en_US
ethz.identifier.wos
ethz.publication.place
Red Hook, NY
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09664 - Schölkopf, Bernhard / Schölkopf, Bernhard
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09664 - Schölkopf, Bernhard / Schölkopf, Bernhard
ethz.identifier.url
https://papers.nips.cc/paper/9603-on-the-fairness-of-disentangled-representations
ethz.date.deposited
2020-07-10T02:46:24Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-10-20T09:08:59Z
ethz.rosetta.lastUpdated
2021-02-15T18:33:30Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=On%20the%20Fairness%20of%20Disentangled%20Representations&rft.date=2020&rft.volume=19&rft.spage=14544&rft.epage=14557&rft.au=Locatello,%20Francesco&Abbati,%20Gabriele&Rainforth,%20Thomas&Bauer,%20Stefan&Sch%C3%B6lkopf,%20Bernhard&rft.isbn=978-1-7138-0793-3&rft.genre=proceeding&rft.btitle=Advances%20in%20Neural%20Information%20Processing%20Systems%2032
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [33479]