Fast Nonlinear Least Squares Optimization of Large‐Scale Semi‐Sparse Problems
dc.contributor.author
Fratarcangeli, Marco
dc.contributor.author
Bradley, Derek
dc.contributor.author
Gruber, Aurel
dc.contributor.author
Zoss, Gaspard
dc.contributor.author
Beeler, Thabo
dc.date.accessioned
2020-07-31T12:26:36Z
dc.date.available
2020-07-19T02:50:39Z
dc.date.available
2020-07-31T12:26:36Z
dc.date.issued
2020-05
dc.identifier.issn
1467-8659
dc.identifier.issn
0167-7055
dc.identifier.other
10.1111/cgf.13927
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/426925
dc.description.abstract
Many problems in computer graphics and vision can be formulated as a nonlinear least squares optimization problem, for which numerous off-the-shelf solvers are readily available. Depending on the structure of the problem, however, existing solvers may be more or less suitable, and in some cases the solution comes at the cost of lengthy convergence times. One such case is semi-sparse optimization problems, emerging for example in localized facial performance reconstruction, where the nonlinear least squares problem can be composed of hundreds of thousands of cost functions, each one involving many of the optimization parameters. While such problems can be solved with existing solvers, the computation time can severely hinder the applicability of these methods. We introduce a novel iterative solver for nonlinear least squares optimization of large-scale semi-sparse problems. We use the nonlinear Levenberg-Marquardt method to locally linearize the problem in parallel, based on its first-order approximation. Then, we decompose the linear problem in small blocks, using the local Schur complement, leading to a more compact linear system without loss of information. The resulting system is dense but its size is small enough to be solved using a parallel direct method in a short amount of time. The main benefit we get by using such an approach is that the overall optimization process is entirely parallel and scalable, making it suitable to be mapped onto graphics hardware (GPU). By using our minimizer, results are obtained up to one order of magnitude faster than other existing solvers, without sacrificing the generality and the accuracy of the model. We provide a detailed analysis of our approach and validate our results with the application of performance-based facial capture using a recently-proposed anatomical local face deformation model.
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.title
Fast Nonlinear Least Squares Optimization of Large‐Scale Semi‐Sparse Problems
en_US
dc.type
Journal Article
dc.date.published
2020-07-13
ethz.journal.title
Computer Graphics Forum
ethz.journal.volume
39
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
Comput. Graph. Forum
ethz.pages.start
247
en_US
ethz.pages.end
259
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Oxford
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::03420 - Gross, Markus / Gross, Markus
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::03420 - Gross, Markus / Gross, Markus
ethz.date.deposited
2020-07-19T02:50:53Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-07-31T12:26:50Z
ethz.rosetta.lastUpdated
2023-02-06T20:15:22Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Fast%20Nonlinear%20Least%20Squares%20Optimization%20of%20Large%E2%80%90Scale%20Semi%E2%80%90Sparse%20Problems&rft.jtitle=Computer%20Graphics%20Forum&rft.date=2020-05&rft.volume=39&rft.issue=2&rft.spage=247&rft.epage=259&rft.issn=1467-8659&0167-7055&rft.au=Fratarcangeli,%20Marco&Bradley,%20Derek&Gruber,%20Aurel&Zoss,%20Gaspard&Beeler,%20Thabo&rft.genre=article&rft_id=info:doi/10.1111/cgf.13927&
Dateien zu diesem Eintrag
Dateien | Größe | Format | Im Viewer öffnen |
---|---|---|---|
Zu diesem Eintrag gibt es keine Dateien. |
Publikationstyp
-
Journal Article [121987]