Show simple item record

dc.contributor.author
Chan, Hardy
dc.contributor.author
DelaTorre, Azahara
dc.date.accessioned
2020-10-16T10:09:32Z
dc.date.available
2020-07-23T05:20:17Z
dc.date.available
2020-07-30T14:31:02Z
dc.date.available
2020-10-16T10:09:32Z
dc.date.issued
2020
dc.identifier.issn
0360-5302
dc.identifier.issn
1532-4133
dc.identifier.other
10.1080/03605302.2020.1784209
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/428051
dc.description.abstract
We answer affirmatively a question posed by Aviles in 1983, concerning the construction of singular solutions of semilinear equations without using phase-plane analysis. Fully exploiting the semilinearity and the stability of the linearized operator in any dimension, our techniques involve a careful gluing in weighted (Formula presented.) spaces that handles multiple occurrences of criticality, without the need of derivative estimates. The above solution constitutes an Ansatz for the Yamabe problem with a prescribed singular set of maximal dimension (Formula presented.) for which, using the same machinery, we provide an alternative construction to the one given by Pacard. His linear theory uses Lp-theory on manifolds, while our strategy relies solely on asymptotic analysis and is suitable for generalization to non-local problems. Indeed, in a forthcoming paper, we will prove analogous results in the fractional setting. © 2020 Taylor & Francis Group, LLC.
en_US
dc.language.iso
en
en_US
dc.publisher
Taylor & Francis
en_US
dc.subject
Critical Yamabe problem
en_US
dc.subject
Gluing construction
en_US
dc.subject
Higher dimensional singularity
en_US
dc.subject
Lane-Emden equation
en_US
dc.subject
Singular solution
en_US
dc.subject
Stable solution
en_US
dc.title
An analytic construction of singular solutions related to a critical Yamabe problem
en_US
dc.type
Journal Article
dc.date.published
2020-07-06
ethz.journal.title
Communications in Partial Differential Equations
ethz.journal.volume
45
en_US
ethz.journal.issue
11
en_US
ethz.journal.abbreviated
Commun. partial differ. equ.
ethz.pages.start
1621
en_US
ethz.pages.end
1646
en_US
ethz.grant
Regularity and Stability in Partial Differential Equations
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Philadelphia, PA
en_US
ethz.publication.status
published
en_US
ethz.grant.agreementno
721675
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2020-07-23T05:20:21Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-10-16T10:09:44Z
ethz.rosetta.lastUpdated
2020-10-16T10:09:44Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=An%20analytic%20construction%20of%20singular%20solutions%20related%20to%20a%20critical%20Yamabe%20problem&rft.jtitle=Communications%20in%20Partial%20Differential%20Equations&rft.date=2020&rft.volume=45&rft.issue=11&rft.spage=1621&rft.epage=1646&rft.issn=0360-5302&1532-4133&rft.au=Chan,%20Hardy&DelaTorre,%20Azahara&rft.genre=article&rft_id=info:doi/10.1080/03605302.2020.1784209&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record